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Constraining Aspherical Structure With Low-Degree Interaction Coefficients:

Application to Uncoupled Muliiplets

MICHAEIL RITZWOLLER,I GUY MASTERS, AND FREEMAN GILBERT

Institute of Geophysics and Planetary Physics, University of California, San Diego, La Jolla

The effect of even-order aspherical structure on displacement for each isolated multiplet in the Earth’s
seismic free oscillation spectrum can be represented by a discrete set of coefficients which characterize the
interaction between singlets, Each interaction coefficient is linearly related to aspherical strucwure of a given har-
monic degree and azimuthal order. Although interaction coefficients are nonlinearly related to displacement,
they can be estimated iteratively by Newton’s method, a technique that we call spectral fitting. We have applied
spectral fitting to approximately 350 recordings taken from 18 large or deep events and have estimated the
degrees 2 and 4 interaction coefficients for 38 low harmonic degree (f<9) multiplets. An error analysis, based
on misfit, is also presented. These cocfficients and errors provide linear constraints on aspherical structure and
are tabulated for use in future inversions. The estimated coefficients partition naturally into two subsets: those
for the 10 anomalous multiplets and those for the 28 multiplets dominantly sensitive to mantle heterogeneity.
On average, the degree 4 coefficients lie below the error estimates, and we interpret only the degree 2
coefficients. The degree 2 coefficients for the mantle sensitive multiplets behave smoothly, within observational
error, along low radial order dispersion branches (3§, ;5,55 , 55), indicating that a simple mantle model exists
that will fit them. Comparison between the estimated interaction coefficients and those predicted by models
expressed as perturbations to v, ot v, is complicated by the necessity of assuming empirical scaling relation-
ships between v, , v, and p. The numerical values in these relationships are currently subject to debate, but in
any reasonable case the degree 2 coefficients predicted from the models M84A and 1.02.56 of Dziewonski and
Woodhouse agree qualitatively with the estimated coefficients. A wide range of mantle models will quantita-
tively fit the mantle sensitive coefficients, the fundamental mode coefficients computed from multiplet center
frequency observations (g8 25— oS 49) and the geoid simultaneously. The characteristics of these models are
strongly dependent on allowed model characteristics with trade-offs between volumetric and boundary perturba-
tions being particularly important. In agreement with the results described in an earler paper using a different
technique, the anomalous multiplets are dominated by degree 2, axisymmetric structure somewhere in the core.
Inferences concerning the nature and location of this heterogeneity are also dependent upon the scaling relation-
ships and constraints placed on mantle structure. Not surprisingly, the resolution of the cause of anomalous

splitting awaits confidence in long-wavelength mantle models and more and different kinds of data.

1. INTRODUCTION

Digital seismic data from the International Deployment of
Accelerometers and the Global Digital Seismic Array have been
accumulating for more than a decade and have stimulated obser-
vational studies of the aspherical structure of the Earth. The aim
of the present study is to provide new constrainis on long-
wavelength aspherical structure by using information contained in
these low-frequency seismic recordings. Aspherical structure
manifests itself at low frequencies by splitting and coupling the
singlets from one or more muitiplets. Perturbations of the Earth
from spherical symmetry split singlet frequencies which would be
degenerate if the symmetry were intact. Such splitting dominantly
affects spectra by producing phase shifts relative to the spherically
symmetric reference state. Coupling between singlets, either
within a multiplet or between multiplets, can further produce
large-amplitude perturbations. Both of these effects are observa-
tionally well documented and are becoming better understood.
Masters et al. 11982] observed fundamental spheroidal mode fre-
quency shifts analogous to phase shifts to Rayleigh wave packets
and used the formalism of Jordan [1978] (a theory of great circu-
lar averages asymptotically valid for large harmonic degree {) to
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interpret these observations in terms of spherical harmonic degree
2 lateral heterogeneity in the transition zone. Woodhouse and
Dziewonski [1984] developed a technique, based on the same
asymptotic formalism, which used the phase shifts in the time
domain to produce aspherical models of the upper mantle with
degrees 1-8. Davis and Henson [1986] recently studied the
domain in which the great circle average approximation is valid.
Davis [1987] reanalyzed the center frequency data used by Mas-
ters et al. [1982] with a more accurate theory, and Smith et al.
[1987] analyzed a somewhat larger center frequency data set with
a fully nonasymptotic theory. Masters et al. [1983] observed per-
turbations to the degenerate frequencies and attenuation rates of
fundamental spheroidal and toroidal modes due to coupling
caused by the Coriolis force. Direct observations of the singlet
frequencies of a number of low harmonic degree multiplets were
reported by Ritzwoller et al. [1986]. Ali these studies concen-
trated on interpreting perturbations in phase caused by aspherical
structure. A more nearly complete use of long-period data would
include amplitude information as well.

This study presents the systematic application of one such tech-
nique, which we call iterative spectral fitting [Ritzwoller et al.,
1986], to a number of low harmonic degree multiplets which are
betieved to be no more than weakly coupled to other nearby mul-
tiplets. As will be described in section 2, the effect of even-order
aspherical structure on displacement for each uncoupled multiplet
can be represented by a set of discrete complex coefficients, each
linearly related to asphericat structure of a given degree and order.
Since these coefficients are linearly related to aspherical structure,
Ritzwoller ef al. [1986] referred to them as aspherical structure
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Fig. 1. High signal-to-noise amplitude spectra of four 75-hour records,
from different events, exhibiting low harmonic degree overtones,

coefficients. This name is potentially confusing since it may also
be uvsed for the model coefficients which represent aspherical
structure. Woodhouse et al. [1986] and Giardini et al. [1987)
refer to the coefficients, when multiplied by the corresponding
spherical harmonics and summed, as splitting functions. This
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name underscores the primary role that they play in determining
the structure of the splitting matrix. Since these coefficients con-
trol general singlet interactions and not just frequency splitting,
we choose now to call them interaction coefficients. (Splitting
coefficients are the coefficients which govern the frequency split-
ting caused by the Coriolis force, centripetal acceleration, and:
ellipticity of figure [Dahlen and Sailor, 1979].) Furthermore, we
wish to generalize the technique to be applicable to coupled multi-
plets, in which case the splitting matrix is usually called the
interaction matrix.

The interaction coefficients can be estimated by iterative spec-
tral fitting, the goal of which is to improve iteratively the
coefficient estimates by minimizing the spectral residual, the
difference between a synthetic spectrum and the data spectrum for
a given multiplet within a specified frequency band:

Bnax

nnnz;j w, (@)As, (@)de

" ﬂ)min
where As is the residual spectrum, » is the recording index, and
w, is a weight which will be discussed later. To the best of our
knowledge this technique was first vaguely referred to by
Ritzwoller and Masters [1984], but a very similar technique was
developed independently and the first results were reported by
Woodhouse and Giardini [1985]. Further results from the appli-
cation of this technique are given by Ritzwoller et al. [1986],
Woodhouse et al. [1986], and Giardini et al. [1987].

We applied this algorithm, which is described in detail in sec-
tion 2, to approximately 350 recordings from 18 large events and
estimated the degrees 2 and 4 interaction coefficients for 38 multi-
plets, Once estimated, these coefficients provide integral con-
straints on aspherical structure and can, in principle, be used as
data in the inversion for the causative structure. Unlike studies
which concentrate on fundamental modes, many of the multiplets
we consider are very sensitive to structure below the upper man-
tle, and the coefficients we estimate constrain aspherical structure
at all radit. As Figure 1 exhibits, there have been a number of
large earthquakes which excite these multiplets in the last few
years, and the quantity and quality of data are now adequate to
perform the experiments described herein.

The technique breaks naturally into two parts: a discrete regres-
sion for the interaction coefficients for a number of multiplets
(spectral fitting) followed by a continuous inverse problem. We
present a first step in the construction of a catalogue of
coefficients which constrain aspherical structure throughout the
entire Earth. The coefficients presented here are insufficient to
resolve even the degree 2 part of mantle structure unambiguously.
However, they do provide new tests on existing mantle models
(see section 4.1) and can be used in future inversions with similar
or quite different kinds of data than used here. It is interesting to
consider the range of models which will fit the estimated
coefficients. For this reason we present the result of an inversion
for degree 2 mantle structure using a method of inversion (see the
appendix) quite different from that used in previous inversions for
aspherical mantle models (in particular, the reference models M84
of Woodhouse and Dziewonski [1984] and LO2.56 of Dziewonski
[1984]). Instead of choosing a set of smooth basis functions a
priori, we follow Gilbert et al. [1973] and explicitly solve for
smooth models between seismic discontinuities by minimizing the
sum of the integral of the square of the radial second derivative of
the volumetric perturbations and the square of the Euclidean norm
of the boundary perturbations.
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We attempt to limit discussion to multiplets which, to a good
approximation, can be considered uncoupled, and the accuracy of
the coefficient estimates depends critically on the judicious choice
of multiplets analyzed. We have concentrated on isolated multi-
plets mainly as a computational convenience, but this focus has
the unfortunate consequence of constraining only the even-order
part of aspherical structure. However, the generalization of spec-
tral fitting to coupled multiplets is straightforward and will greatly
expand the data set by including multiplets of higher harmonic
degrees. In principle, it will also allow constraints to be placed on
odd-order heterogeneity, although as discussed by Masters and
Ritzwoller [1987], the effect of long-wavelength odd-order struc-
ture on the data is slight. This will be the subject of a later paper.

Attenpts to model low-frequency seismic data with great preci-
sion hold promise for geological and geodynamical relevance,
albeit on a global scale [Jarvis and Peltier, 1986]. Aspherical
effects have been observed in a number of body wave phases
which sample the lower mantle and core-mantle boundary (CMB)
[Doornbos, 1983; Lay, 1987]. Travel times from the huge Inter-
national Seismological Centre (ISC) data set have been used in
tomographic inversions to try to map the longest wavelengths of
aspherical structure in the lower mantle [Clayton and Comer,
1983; Dziewonski, 1984]. Although the models produced by these
two studies are qualitatively similar at degree 2, they differ in
amplitude by about a factor of 2 (R. W. Clayton, personal com-
munication, 1987). Further constraints on the lower mantle from
low-frequency seismic data should help resolve this disagreement,
but as will be described shortly, these efforts are troubled by
difficulties in comparing body wave and free oscillation models
which also translate into ambiguities in amplitude. Recent studies
of the anomalous travel times of PKP phases [Poupinet et al.,
1983; Morelli and Dziewonski, 1987, Creager and Jordan, 1986b]
and the anomalous splitting of multiplets in the Earth’s free oscil-
lation spectrum which is very sensitive to the core [Masters and
Gilbert, 1981: Ritzwoller et al., 1986; Giardini el al., 1987] seem
to point to the existence of large-scale, dominantly axisymmetric
heterogeneity on or below the CMB. Tt is not unlikely that the
cause of these disparate phenomena are related, but investigators
have not yet been able to agree on the nature or location of the
causative structure(s), Ritzwoller et al. [1986] presented the sim-
plest smooth model of aspherical structure in the core which fits
most of the free oscillation data. To date, a number of seriously
proposed hypotheses have been entertained, including large-
amplitude structure on the CMB {Creager and Jordan, 1986b;
Morelli and Dziewonski, 1987] and/or inner core boundary (ICB)
[Poupinet et al., 1983; Giardini et al., 1987}, a chemical boundary
layer above or below the CMB [Creager and Jordan, 1986b],
large isotropic volumetric perturbations in the inner core [Giardini
et al., 19871, and anisotropy in the inner core [Woodhouse et al.,
1986; Morelli et al., 1986]. It remains unclear which, if any, of
these features are physically plausible. It is clear that it will only
be through the application of a number of different technigues
with data which span the seismic frequency band which will allow
us to infer any one of the competing alternatives.

A natural approach to improve constraints on the lower mantle
and core is to attempt to combine body wave and free oscillation
data sets and to interpret them jointly [Woodhouse and Dziewon-
ski, 1986]. Meaningful comparisons between models independ-
ently produced by bhody wave and free oscillation studies are
difficult. Although free oscillation data are sensitive to both shear
velocity v, and compressional viscosity v,, as well as density p,
the data are currently insufficient to estimate simultaneously all
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three functions of radius for each degree and order of aspherical
structure. As described in the appendix, a common approach has
been to assume an empirical linear scaling relationship between
relative perturbations in v;, v, , and p, reducing the problem to the
estimation of a single function of radius in any one of the three
variables. The relationships used in the present paper are
dlnv,/d Inp and d Inv,/d Inv,. As described in the appendix,
the numerical values of these relationships affect the amplitude of
the integral kernel in the definition of the interaction coefficients.
Uncertainties in these values will result in ambiguities in the
amplitude of the inferred model and hence will exacerbate com-
parison between free osciilation and body wave models,

The motivation for the linear scaling approach has been the
observation of the near constancy of the ratios of the temperature
derivatives of the relative quantities Inx, Ingt, Inv,, and In v, for
many materials (¢ and ¢ are the bulk and shear moduli, respec-
tively). For example, Chung [1971] determined the temperature
derivative of various olivine compositions and estimated that
d Inv,/d Inv, ~ 1.3, Tn addition, it is easy to show that if partial
melt were the sole cause of lateral variations and if it were to
affect just 4 while x and p were fixed, then & Inv,/d Inv, ~2.25.
Obviously, the appropriate values that the scaling relationships are
to take, if in fact they are relevant to the Earth, are dependent on
the nature of the lateral heterogeneity. It is not unlikely that
lateral heterogeneities result from some combination of tempera-
ture variations, partial melting, and chemical heterogeneities. It
remains an open guestion as to the relative importance of these
contributions. If chemical heterogeneities dominate, then the
linear scaling approach would probably be unfruitful. If some
combination of thermal effects and partial melting dominates,
then appropriate local scaling relationships probably do exist;
although the values taken by these relationships will be dependent
on the relative importance of these two faciors, which may be a
strong function of depth and may itself vary laterally.

In principle, it is straightforward to constrain d Inv, /dInv,
with seismic data. Compressional and shear wave travel time
residuals (8¢, and t,) computed as station corrections have been
used both on a global scale {e.g., Hales and Doyle, 1967; Orcutt et
al., 1986] and regionally [e.g.. Romanowicz and Cara, 1980,
Souriau and Woodhouse, 1985] to estimate this ratio. It is easy to
show, from Fermat’s principle, that

dlnv, v, | Ot

dinv, | v, | &,

Thus, for a Poisson solid, a residual ratio &, /8, ~2.2 would
agree with the thermally induced ratio d In v,/d Inv, ~ 1.3, and
8,181, ~4.0 would agree with the partial melting  ratio
dnv/dny, ~2.3. Global residual ratios range from highs near
4.0 to the more recently determined values of 2.8-3.0 by Orcutt et
al. [1986]. The utility of the global residual ratios has been ques-
tioned by Romanowicz and Cara [1980], who show how they can
be biased high by neglecting the effects of tectonic regions.
Romanowicz and Cara [1980] and Sowriau and Woodhouse
[1985] agree that the residual ratios show strong lateral variations.
It is also not unlikely that the ratios are depth dependent, and stu-
dies based on station corrections probably only bear on the scaling
relationships in the upper mantle. fordan and Lynn [1974] com-
pute the travel time residuals for the differentiaf phases Sc5—5 and
PcP—P, which agree with the global average of Orcutr et al.

[t986] and which they localize in the top of the lower mantle.
Little evidence about scaling in the deeper mantle exists. Giardini
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et al. [1987] point out that by using d Inv, /d inv, > 2.0, they can
improve the fit of the model L02.56 [Dziewonski, 1984] to the
interaction coefficients (their splitting functions), In section 4 we
show that this improvement in fit is confined to a very few
coefficients and can also be accomplished by a CMB perturbation,
Due to the insensitivity of body wave models to density, little
seismic evidence exists to constrain  Inv, /d Inp. B. H. Hager
and R. W. Clayton {unpublished manuscript, 1986) estimate this
ratio by scaling Clayton and Comer’s lower mantle model to fit
the geoid.)

Thus no clear concensus has been reached on any of the scaling
relationships other than perhaps that they vary laterally and that
the hope of finding a useful global average may be faint. We are
forced to assume linear scaling relationships in the present study,
but when considering preexisting body wave models, as in section
4, we consider the values mentioned above as end-members in a
suite of physically realistic alternatives and report comparisons
from both end-members.

Following a brief discussion of the forward problem for iso-
lated multiplets, we describe spectral fitting in some detail. The
data analysis is discussed in section 3 with emphasis placed on the
analysis of misfit. A comparison between the estimated interac-
tion coefficients and those computed from existing mantle models
and the inverse problem for degree 2 structure are included in sec-
tion 4. We focus on problems associated with inferring mantle
strycture, but the interpretation of the anomalous multiplets is also
briefly discussed.

2. THEORETICAL PRELIMINARIES

2.1 First-Order Splitting Theory

Consider a set of multiplets, represented by the index & =(x, 1),
which for seme reason can be considered approximately uncou-
pled (e.g., they may be isolated in complex frequency or may not
satisfy the angular selection rules). Here n and { are the radial
order and harmonic degree of each multiplet k. A complete
description of the effect of small general aspherical perturbations
on qncdupled multiplets is given by Woodhouse and Dahlen
[1978] and Woodhouse and Girnius [1982]. These results fre-
quently are called first-order splitting theory which we merely
summarize here. '

The displacement field at spherical polar position r=(r.8,¢)
excited by a point source at ry with moment rate tensor M can be
wriltent as the inner product

S(r,r)=Re{EGk(r)-ak(ro,t)eiw*’} (L)

k

where the complex envelope function vector a,{r) is given by
a()y=P.(t)a,, a,(0)=a, 2)

P, (ty=exp(iH,1) is the matrizant or propagator matrix of the fol-
lowing first-order propagator equation with initial condition given
in (2}

2 ) =iHea o) 3)

The receiver vector 6, in (1) is composed of the 2¢+1 singlet
eigenfunctions:

o (r)=fU(r)Y7' 0,0} + Vi(r)V Y7 0.0)

- Wk VEre.e) P
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The excitation vector a, comprises the 2¢+1 excitation coefficients
ai' =M :g{"*(ry). The term &/"" is the complex conjugate of the
strain tensor for the azimuthal order m singlet and is expressible
in terms of the multiplet scalars Uy, V,, and W, in (4) [Gilbert
and Dziewonski, 1975]. The complex spherical harmonics, ¥{",
are normalized according to the convention of Edmonds [1960].
The dependence of displacement on aspherical structure in (1)}
can be made explicit by considering the components of the
(204+1) % (2{+1) complex splitting matrix H,:
2

Homr = @y +mbiAm?c )8y + X,y el ™ (5
fon
where
e D
kC‘§=J‘5m§(f”)‘st(?')r2d” ~ X rihiy 1By (6)
b d

The first term on the right-hand side of (5) represents the contribu-
tion by rotation and hydrostatic ellipticity of figure. Here @, is
the degenerate frequency, and numerical values of the splitting
parameters ey, &y, and ¢, evaluated for some multiplets are given
by Dahlen and Sailor [1979] and Ritzwoller er al. [1986]. We call
the model containing only these contributions to H; the RH
model (standing for rotating, hydrostatic Earth model). The
second term contains the additional effect of general even-order
aspherical volumetric (m,(r)) and boundary (//;) perturbations.
Aspherical perturbations are represented with spherical harmonic
basis functions of degree s and order ¢:

om(r) =3 om;(r)Y;0.¢) h,©.9) =T hiY/0.¢)

S0

)

for each boundary d. The model vector is
omi(r)= (P {(r), &(r), Jiry
and the integral kernel vector is
G, (r)= R (r). K (r), My (r )

where R;. K, and M; can be computed using the formulas given
by Woodhouse and Dahlen [1978]. Each multiplet & possesses a
unique set of complex interaction coefficients ¢, whose ampli-
tude and phase are functions of the amount and distribution of
heterogeneity in the Earth and of the manner in which the multi-
plet samples this heterogeneity. All of the other constituenis of
(6) can be computed analytically. Estimation of the ¢! fully deter-
mines the splitting matrix and therefore the effect of aspherical
structure on the displacement field for an isolated multiplet.

Insight into the way aspherical structure affecis the displace-
ment ficld is gained by a consideration of the spectral decomposi-
tion of H,:

Hk Uk = Uk Qk (8)

Here Uy is the unitary matrix whose columns are the eigenvectors
of H, and QF,, =80/, is the diagonal matrix of eigenvalues,
Equatiens (5) and (6) demonstrate that aspherical structure splits
the singlet frequencies within each multiplet: & =@, +&»}". For
the RH model, @§" =w, +@, (@, +mb+m’c;) and U, =1 If U, =1,
the m th singlet frequency is uniquely associated with the m th ele-
ment of the receiver and excitation vectors. In this case, each
envelope function ay"() in (1) is a pure harmonic time function,
Additional aspherical structure further splits the singlet frequen-
cies and perturbs U, from 1, producing cross-azimuthal coupling
which associates more than one element of the receiver and exci-
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tation vectors with each singlet frequency. Thus a'(f) becomes a
sum of single harmonics displaying a more complicated temporal
behavior caused by the interchange of energy among azimuthal
orders. Since the apparent period of the envelope function is con-
trolled by the singlet frequency perturbations in €2;, which are
relatively small, a/"(z) will be very slowly varying in time,

2.2. Estimating the Interaction Coefficients

Examination of (1) shows that it is the envelope functions
af(t) which provide the raw material that musi be used to con-
sirain aspherical structure. In the time domain the envelope func-
tions for a single multiplet cannot be separated easily from those
of other multiplets.. However, in the frequency domain where
aspherical structure produces spectral amplitude and phase shifts,
many multiplets are isolated. These two effects can be seen easily
in Figure 2 in which we compare data and synthetic spectra for
135 2 calculated with the RH model (dotted lines) and the degrees 2
and 4 interaction coefficients listed in Table 3 {dashed lines). As
pointed out by Ritzwoller et al. [1986], the RH model very poorly
fits anomalous multiplets such as 35, However, Figure 2 shows
that the fit to the data can be greatly improved both in amplitude
and phase by using the interaction coefficient estimates in Table 3.
{Phase can only be well fit near speciral peaks; disagreement in
phase in low-amplitude regimes is dominated by noise.) Since
1352 is anomalously split, the perturbation to the spectrum caused
by aspherical structure is unusually large. Figure 2 demonsirates
the effect of aspherical structure for the normally split multiplet
oS¢. The improvement in fit to this multiplet is dominated by
improvement in phase, as the spectra for CMO and GAR in Figure
2 exhibit. Clearly, in either case, the amount of signal is quite
large.

Since the interaction coefficients , ¢{ are, by (6), linearly related
to aspherical structure, the accurate estimation of the coefficients
for many multiplets results in a linear inverse problem for the per-
turbing structure: m(r) and A, (6.¢). Unfortunately, as (1), (2),
(5), and (6) show, the ;¢! are nonlinearly refated to displacement.
Ritzwoller et al. [1986] showed that the ¢/ can be estimated by
Newton’s method. Fixing &, this technique is based on the linear-
ization of the dependence of displacement on small perturbations
in the interaction coefficients &/ and complex degenerate fre-
quency ooy :

0s,(r,) o

s(rt)=s,(rt)+Yy 95, (rt) o
K

5.t def
Here s, (r,r) is the displacement field at the reference ¢/ values.
The partial derivative ds/ow; is trivially calculated from (1).
Ritzwoller et al. [1936] (see the appendix) presented two tech-
nigues for amalytically computing the partial derivatives ds/dc;.
The first involved a recurrence relatien in time and is the tech-
nique used in this paper. However, such recursive algorithms are
nonoptimal for vector mode computers. The second technigue
was a nonrecursive algorithm based on an inhemogeneous propa-
gator formalism. Both techniques are designed to create deriva-
tive seismograms in the time domain to which data gaps are then
added and tapers applied and which are finally Fourier
transformed.
After Fourier transforming (9), define the spectral residual for
the n th recording at iteration j as

e + p E)]

As(r,0) = s, (r,0) - s§(r,®) (10)

where 1<n <N. Discretize frequency @; € [@min®max] With
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1<i <1, let §cp =&y, and rewrite (9) as
. £ 85,5”((0,- ) £ ;
A=Y 5 dc, = Y, AYée, (1D
p=1 » p=1

where ¢, is one of the ¢/ with 1<p SVo5 . (s e t3)+1=P and
where 5., is the maximum degree of the even-order aspherical
structure specified. For simplicity, (11) can be rewritten as the
incremental matrix equation

AsYi = AY8e (12)

Each frequency component forms a different row of the residual
vector As and the partial derivative matrix A. Each column of A
represents the  contribution from a unique degree and order of
aspherical structure, i.e., a single p value. Contributions from
subsequent recordings are stacked vertically in As and A. We
write the solution to {12) (the incremental normal equtions) sym-
bolically as

de=A""As (13

The generalized inverse can be obtained with the SVD algorithm
of Golub and Reinsch [1971]. The algorithm represented by
(9)—(13) is simply a Newton’s method solution to the nonlinear
problem.

The estimator defined by (13) is extremely sensitive to statisti-
cal outliers. Qutlier resistance, or robustness, can be improved in
a number of standard ways [Huber, 1981]. We have found a sim-
ple row weighting scheme, based on the residual level at each
recording to be useful. We define the row weight to be applied to
the rows of As and A belonging to the n th recording on iteration j
as

i -5
wi = [(1/1) p (As,{(wi))z] (14)

i=l

(This is simply the inverse rms residual computed across fre-
quency for the nth recording.) As well as improving the stability
of A, this scheme weights down poorly fit records, desensitizing
the estimator to unspecified structure, weak coupling to other mul-
tiplets, and noisy recordings. We have also found that a change in
units performed by normalizing the square of the Euclidean norm
of the columns of the partial derivative matrix before decomposi-
tion enhances the stability of the algorithm [Lawson and Hanson,
1974]. This procedure is iterated until no significant improvement
in fit to the data is achieved.

The degrees 2 and 4 coefficients estimated in this way are listed
in Table 3. In the event that data errors are frequency independent
and the data are well fit, 1/w; would probably be a good estimate
of the standard deviation of the data efror for the nth recording.
In this case, if the observations are statistically independent and
normally distributed, the Gauss-Markov theorem would assure us
that the estimator given by (13) and (14) would be unbiased, have
minimum variance, and have maximum likelihood. The
coefficient covariance matrix could then be estimated in the stan-
dard way. In practice, the validity of these assumptions can only
be checked by examining the residuals after fitting: they should be
at the ambient noise level. Unfortunately, examination of the
residuals (Figures 2-10) reveals that the data are fit imperfectly
and synthetic experiments indicate that errors in the coefficient
estimates due to inaccuracies in approximations and assumptions
are likely to be much larger than the standard statistical estimates.
In lieu of an accurate statistical model an accurate assessment of
the quality of the coefficient estimates must start with an analysis
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Residuol

&

Fig. 3a. (Top) Amplitude spectra around 45 ¢ for six high signal-to-noise
recordings following the large Indonesian event on August 19, 1977. The
amplitudes of the data peaks are normalized. (The four recordings shown
in Figure 2 (bottom) are the second through fifth recordings here.) (Bot-
tom) Amplitude spectra of the residuals (the difference between the data
and synthetic spectra) computed with the degree 2 and 4 coefficients found
in Table 3. Each residual spectrum is plotted on the same scale as the
corresponding data trace.

of the cause of the misfit and its effect on the coefficients. In the
next section we discuss the application of spectral fitting to 38
multiplets using a data set of more than 350 recordings from large
and deep events, followed by an attempt to estimate realistically
the errors in the ¢ ¢{. The inversion for aspherical models from the
estimated , ¢/ and errors is the subject of section 4,

3. DATA ANALYSIS

Spectral fitting has been applied to approximately 350 record-
ings taken from the Global Digital Seismic Network (GDSN) and
International Deployment of Accelerometers (IDA) for the 18
earthquakes listed in Table 1. In this section we discuss the
results of the application of this technique. After decisions about
problem specification have been made, we address the question of
whether the algorithm will converge to coefficient estimates
which fit the data and whether these coefficients provide a global
minimum in misfit. Systematic misfit above ambient noise is
symptomatic of errors in assumptions and approximations which
could lead to biased coefficient estimates. We attempt to isolate
the causes of misfit and to determine their effect on the coefficient
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estimates. The accurate interpretation of the coefficients in terms
of aspherical structure requires that coefficient error estimates
refiect these effects.

3.1. Specification and Convergence

Since spectral fitting is both time consuming and easily
degraded by noisy recordings, we usc only those records with
visually apparent spectral peaks. The number of recordings used
for each multiplet is listed in Table 2. In general, we choose a fre-
quency band for spectral fitting around each multiplet which over-
laps the highest- and lowest-frequency singlets by about 5uHz.
When a nearby nonoverlapping multiplet is present, we truncate
the band short of the interfering multiplet. When nearly equally
excited multiplets overlap in frequency (e.g., 155 and 554, 255 and
S, etc.), the coefficients for all multiplets must be estimated
simultaneously. These multiplets appear as hyphenated pairs in
Table 2. In principle, the definition of the ;¢ in (6) includes the
general effect of even-order, elastic and anelastic volumetric and
boundary perturbations, and one should solve for all coefficients
(0<s <2(). In practice, the quality, number, and distribution of
data are usually insufficient to estimate all of the coefficients,

Residual

Fig. 3b. Same as Figure 3a but for 58 of the recordings of ¢S4 used in the
experiment. The high signal-to-noise recordings from Figure 3a are plot-
ted at the front of each plot. Recordings are plotted in no special order,
although recordings from a single event are clustered.
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Fig. 4a. Same as Figure 3a but for seven high signal-to-noise recordings
taken from several events for |Sy.

even in the presence of very small amounts of noise. Once over-
lapping multiplets are considered, the number of coefficients dou-
bles and problems can become formally underdetermined. We are
thus forced to estimate only a subset of the coefficients for each
multiplet. Since the effect of aspherical anelastic structure on the
data is probably small [Masters and Gilbert, 1983; Buland et al.,
1985], we consider only aspherical elastic structure. We do esti-
mate a perturbation in spherically averaged @ for each multiplet,
i.e., a perturbation to the imaginary part of the degenerate fre-
quency. Considering only elastic aspherical structure constrains
the splitting matrix H to be Hermitian and the aspherical interac-
tion coefficients to satisfy the relation 8¢, = (=) d¢;". This nearly
halves the number of degrees of freedom without significantly
affecting the fit to the data. Experience shows that we can fit most
genuinely isolated multiplets quite well with the degree 2
coefficients alone (see Figures 2-4). We solve for degrees 2 and
4 coefficients and list them in Table 3. The perturbing effect of
unspecified structure on the estimated coefficients must then be
addressed a posteriori.

We seck a robust algorithm which converges in a reasonable
number of steps to accurate degrees 2 and 4 coefficient estimates.
Since the algorithm is an iterative solution to a nonlinear problem,
convergence to a spurious local minimum is possible. The radius
of convergence of the algorithm must be determined empirically
since it depends on a number of variables, among which are the

RITZWOLLER ET AL.: CONSTRAINING THE EARTE'S ASPHERICAL STRUCTURE

multiplet under consideration, the number of recordings used, the
signal-to-noise ratio, the weighting scheme, and the truncation
level of the SVD. However, the most important variable is the
squared FBuclidean norm of the coefficient vector
(lges 12=F,, (™%, which is a function of the magnitude of
aspherical structure in the regions sampled by the multiplet. For
most multiplets the norm of the coefficient vector can be bounded
from above by a consideration of the multiplet’s splitting width,
which itself can be estimated either by examining a great many
individual recordings or through singlet stripping [Ritzwoller et
al., 1986]. The largest coefficient norms will be possessed by the
anomalous multiplets, and these cause us the greatest concern.
Synthetic experiments assure us that these vectors are not outside
the regime reachable by linearized iterative inversion and that for
nearly all the multiplets under consideration here our algorithm
possesses a radius of convergence greater than the radius of all
physically realistic models. Thus problems with this estimator do
not result from its nonlinear nature but reduce to problems com-
monly associated with the linear estimators: bias caused by
unspecified structure, covariance among the estimated
coefficients, etc. This does not minimize their significance.

Residual

Fig. 4b. Same as Figure 4a but for 47 of the recordings used for |5 The
high signal-to-noise recordings are distributed throughout the plot.
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synthetic

Residuai

Fig. 5. Same as Figure 35 but for an experiment performed with synthetic
data, Forty vertical component synthetic seismograms {top) were com-
puted using model DW?2 (degrees 1-8 structure as described in section 4),
spectral fitting was performed and the estimated coefficients, listed in
Table 5, were used to compute the residuals (bottom}. The size of the
residuals are similar to those in Figure 3a.

Evaluation of the quality of the coefficient estimates requires a
careful analysis of misfit which we describe in section 3.2.

3.2, Analysis of Misfit

We consider equation (12) to be embedded in a noise process
which can be represented by the error term £(@}:

As(@) = Alw)de +glew)

Commonly, data errors are assumed to be Gaussian when all the
statistical variability is thought to be due to measurement errors.
In the present case the error term is complicated by the fact that A
is itself a stochastic entity containing measured quantities as well
as assumptions and approximations which might loosely be called
signal-generated noise. Noise which is not generated by the sig-
nal results from a variety of sources, among which are aftershocks
and other seismic events during the recording period, instrument
malfunction, timing errors, atmospheric pressure variations, etc.
If these sections of anomalous data are short enough, the data are
zeroed or linearly interpolated. Records with more than a small
percentage of bad data are rejected. Timing errors are sought and
corrected during moment tensor retrieval. Though diminished,
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contamination of the spectrum due to these processes remains.
Over narrow frequency bands, these processes are probably nearly
frequency independent and produce what might be considered o
be the ambient noise in each spectrum. If ambient noise were the
only source of error, misfit would be at the ambient noise level.
An examination of Figures 3 and 4 reveals that for even the best
fit multiplets the residual is above the ambient noise level for the
highest signal recordings. It is signal-generated noise which
causes the standard error analysis to be inaccurate and is the main
cause of error in the coefficient estimates.

Signal-generated noise derives generally from two sources: (1)
measurement errors and approximations in A and (2) unspecified
structure and multiplet-multiplet coupling. The first source of
noise comprises errors in the radial eigenfunctions, in the esti-
mates of the source mechanism and instrument responses, and in
the numerical approximations used to construct the partial deriva-
tives. Numerical approximations can be controlled to have a
smatl effect. Nominal responses for both IDA instruments and
GDSN instruments since 1980 appear, with a few exceptions, to

Residual

Fig. 6. Same as Figure 3b but for 22 of the recordings used for the
anomalous multiplet 35,. Residuals for this and most of the other
anomalous multiplets are, on average, above ambient neise levels.
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Residual

Fig. 7. Same as Figure 3b but for 45 of the recordings used for the
anomalous multiplet |4S,. The residual level for 45, and other
anomalous multiplets is frequently above ambient noise, believed 1o result
from errors in the radial eigenfunctions.

be quite accurate. R. Woodward and G. Masters (unpublished
manuscript, 1987) report the recalibration of the GDSN instru-
ments prior to 1980 so that errors in instrument responses should
not be a major problem when data from a number of events are
included. Moment tensor estimates are used in the construction of
the source vector a; in equation (2) and are probably accurate to
better than 10% of the moment for most events used here. At this
level, errors in the moment tensor produce a relatively small effect
on the coefficient estimates. Errors in the source time functions
become more appreciable as frequency increases, producing rela-
tively larger phase errors for higher-frequency multiplets. For
example, an error of 10 s in the source time function produces a
4° phase error for o5 but a 20° error for 35, Higher frequency
multiplets will be harder to fit, but it is expected that errors in the
source time function are random, and general errors in the esti-
mate of the source mechanism should not be a serious problem
when data from a number of events are included. The radial

RITZWOLLER ET AL.; CONSTRAINING THE EARTH'S ASPHERICAL STRUCTURE

eigenfunctions computed relative to a radial Earth model (1066A
here) pervade the computations, going into the construction of o,
a;, and ; G,(r). Their accuracy depends on the accuracy of the
radial model at those depths where each mode is most sensitive.

Errors in the radial eigenfunctions for the mantle sensitive modes
are probably relatively small. (For example, the interaction
coefficients computed relative to 1066A for the mantle modes
with aspherical model Ms2 of section 4 differ by less than
0.1tHz from the coefficients computed relative to 1066B.) How-
ever, it is not unlikely that the radial eigenfunctions for the
anomalous modes are in error since spherically averaged core
structure is quite poorly constrained [Stark et al., 1986]. A
noteworthy example is the extreme dependence of the eigenfunc-
tions of S, on the location of the inner core boundary (ICB).
Although the location of the ICB in models 1066A and 1066B
differ by less than 13 km, model 1066B mispredicts this mode to
be trapped in the inner core.

The effect of unspecified higher-order structure is strongest on

Fig. 8 Same as Figure 35 but for 55 of the recordings of the overlapping
multiplets |55 and 55 4. The high residual level is indicative of coupling
between these multiplets.
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synthetic

Residual

Fig. 9. Same as Figure 8 but for an experiment performed with synthetic
data for ;3 5 and 5, kke that described in the caption for Figure 5 but with
coupling between these modes. The large residuals indicate that (§ 5 and
234 are coupling fairly strongly in the synthetic experiment but are larger
than with real data (Figure 8). It is not unlikely that DW2 possesses more
degree 1 and 3 structure (through which \§ 5 and ,§, couple) than the real
data.

singlets with nearly degenerate cross-azimuthal coupling partners.
Since the density of singlets within most multiplets is nonuniform,
this contribution to the error term will be a strong function of fre-
quency. A multiplet of harmonic degree f is sensitive to spectral
structure of degree and order up through 2{. Since we estimate
structure only up through degree 4, the biasing effects of higher-
order structure potentially increase with increasing harmonic
degree of the multiplet. (However, degree 2 multiplets such as
392, 1052, and 155, are fully specified.) Although we attempt to
focus on isolated multiplets, weak coupling does contaminate
some of the multiplets considered here, and the accuracy of spec-
tral fitting depends critically on diagnosing when strong coupling
is likely to occur. In section 3.2.2 we discuss the synthetic experi-
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ments which have been performed to determine the effect of weak
coupling on the multiplets that we analyze. In summary, signal-
generated errors are of extreme concern and are dependent on the
multiplet considered, frequency, and source and receiver location.
We should also mention that due to the smoothing characteristics
of the taper in the frequency domain, they are also probably not
independent.

In theory, a complete understanding of the statistical properties
of each of the noise processes would lead to accurate estimates of
the bias and variance of the coefficient estimates. Since we have
no a priori estimate of these quantities, we are forced to try to
bound their effect on the estimated coefficients with synthetic
experiments. The relative importance of the noisec processes
differs among multiplets. For example, it is likely that the misfit
to oS¢ is dominated by ambient noise and higher-order structure,
the misfit to fully specified anomalous modes (e.g., 1352, 1652, 355)
by errors in the radial eigenfunctions, and the misfit to overlap-
ping multiplets (e.g., 155—254 156~ 255) by multiplet-multiplet
coupling. A first atternpt at estimating the covariance matrix Cy
of the interaction coefficients for multiplet £ could be made with
(14) used as an estimate of the inverse standard deviation for

Fig. 10. Same as Figure 3b but for 108 of the recordings for (S Large
residuals indicate Coriolis coupling to the nearby toroidal mode T4
which appears, mostly on horizontal recordings, as peaks at the high-
frequency end of the spectra.



6380

TABLE 1. Event Specification

Source
Time,* s

Moment Tensor Elements

Total

Number of Recordings

Longitude, Depth,

Colatitude,

Origin Time

Mrlb

11.80

—0.62

Mr@

3
3

IDA  SRO/ASRO Total Moment
14.10

deg
184.10

deg
112.88

Time
1977 173 1208:33

Year Day

Event

47

1.76
831
-3.17
2.
0.66
436

3.16
0.20

0.59

6.58
291
-8.70

0.47
-6.47

23.57

28 -7.03
-26.48

21

65

t
2
3
4

30
50

26.50

28
40
21

21

20
25

118.46
280.64

101.09

1977 231 0608:55

197% 346 0759:03

1.63
0.28
0.17

-0.99

-1.15

—0.08

9.85
6.55

30 10.00
-0.90

13
10
0

10

£8.40
102.53

17

1.80

33
450

165.92

1980 199 1942:23

5
10

0.59
-2.28

0.98
-5.87

-2.11

-0.08

7.99
5.99
1.47

0.29
1.19

-0.27

1.40
8.75

23
14

13
14

70
24
79

126.04
153.58

97.34
94.88

77 0905:50

1983 146 0300:00
1983 328 0530:34

1984

1982 173 0418:40
1984

1983

R{TZWOLLER ET AL

2
40
25

—2.13
.30

.26

1.59

-0.59

.16

—0.53

-1.21

—0.62

208
-3.54

0.65
—0.44-
-2.88
-1.10

0.62
-1.31

0.46

0.41
—3.88

2.35

-0.97

0.79

—0.47

(.18
-1.27
0.53
(.39
0.67
043
1
8.03
0.94

-5.37
0.14
-2.32

—0.67

0.46
-7.02
-0.10
-1.06
-1.05

—0.40
~0.43

-1.61
0.11
1.13
0.94
0.93
0.46
-0.19
—1.66
—4.09
—8.68
-3.69

—0.62

7.21
1.76
5.15
9

—.49
—0.91

6.22
L7
0.65
4.07
1.59
109
1.74
7.25
1.87
10.30
10.22

11
27
13
13
13
26
24
21
23
2
13
12
362

11
14
13
13
13
14
12
11
12
12
13

368
18
457
242
202
20
99
20
3

139.10
128.16
136.89
160.46
138,93
122.51
125.12
288.02

70.89
257.73
185.22

49.54
97.48
56.32
100.00
60.62
90.08
84.84
123.16
53.81
71.48
38.48
118.10

1 0903:39
38 213322

1984 66 0217:21
1985 62 2247:07

1985 210 0754:44

1984 219 1201:52
1984 325 0815:16
1985 262 1317:57
1986 127 2247:11

7
8
9
0

12

13

14

15

16

17

1i
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-1.42 2.00 -3.51 10

1.10

2,59

574

12

209

33

183.57

1986 293 0646:10

18

153

Moment tensor elements are in units of 10°° N'm.

#*Half-baseline width of the source time function.

record n. The coefficient variance estimates (¢’ =diagC) are
quickly shown to be too small by synthetic experiments with the
inclusion of realistic amounts of signal-generated noise. In addi-
tion, simple changes in the experimental prescription (e.g., time
series length and start time, row weighting scheme, SVD trunca-
tional level, etc.) frequently cause perturbations larger than these
error estimates. Furthermore, since the way in which multiplets
on the same dispersion branch sample the Earth changes smoothly
along the branch, the coefficients should also vary smoothly along
the branch within the errors estimated. This ensures consistency
of the coefficients estimated from different multiplets. The along
branch variability, although fairly smooth, is still too great to be
encompassed by these simple error estimates. These reasons lead
us 1o believe that estimated standard deviations have to be
increased by a factor of 3—5 on average.

Although variances estimated in this way are too smail, in most
cases they probably reflect the relative sizes of the coefficient
errors. Relative errors are dependent on the relative sensitivity of
the data to the coefficients which are reflected by the elements of
o.. However, the estimated coefficient covariance matrix will not
be related, in a straightforward manner, to the probability distribu-
tion of the estimated coefficients and therefore wili not provide
error estimates which are even relatively accurate across multi-

TABLE 2. Summary of the Fit to the Data

XZ o, x2
Ratio* Reductiont Number of
Multiplet s=2.4 s=2,4 Recordings
oS3 0.35 5 14
o3 .15 20 32
4 0.04 71 36
s 0.10 78 73
s 0.09 82 85
oS4 0.08 87 108
T3 0.13 33 108
s 0.03 90 120
aSe 0.06 79 146
8335 0.11 33 44
1S4 0.22 20 39
S84 0.28 49 93
SsSs 0.25 42 102
5 0.16 75 60
58 0.10 90 70
S 0.20 76 37
284 0.22 87 26
e 0.16 74 82
2S4S 0.28 65 143
P 0.36 86 30
53 0.11 73 36
P 0.16 66 68
95 0.13 63 93
St 0.10 71 117
557 0.16 76 75
sSg 0.31 57 56
633—35g 0.25 74 100
455 0.22 86 60
oS3 0.44 84 54
1052 0.31 91 52
1154 0.22 89 68
s .10 92 33
1352 0.22 92 82
1353 0.34 89 68

S HBYE [5, @;)0, @;)], where 0, @@ =w, " in {14) and %@ is
defined in (15),
#Relative to the RH model: (1-* (@ %0).
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TABLE 3. Degrees 2 and 4 Interaction Coefficient Estimates

cf Rec] Imci Recd Ime] e? Rec! TIme} Reci TImef Ree] Imej Reef Imef
oS 0.80 040 0.10 0.50 0.90 010 0320 -0.20 0.50 1.00 0.90 1.70 1.90 1.00
i 1.50 0.40 0.10 -0.90 1.20 -0.20 0.10 -0.10 0.10 ~-{.30 0.50 -0.40 -1.50 0.50
s 2.00 0.50 0.30 -1.30 1.60 020 020 0.00 0.20 —0.30 0.00 0.30 0.50 —0.70
s 2,30 0.50 0.20 -2,10 2.50 0.00 0.00 0.40 0.50 0.60 0.50 0.70 0.20 0.50
o7 1.70 0.90 0.10 -2.80 3.00 0.00 030 —0.50 0.90 0.70 0.30 0.10 -0.20 —0.10
oS 1.30 1.10 0.10 -2.20 260  -1.00 0.60 0.50 0.20 0.40 0.70 1.00 —0.50 ~1.30
oo ~0.80 1,40 -0.30 -2.40 370 0.10 ~040 —0.20 0.10 (.50 1.40 0.70 0.20 0.20
15, 0.10 0.60 0.30 -1.30 2.20 0.60 0.20 -0.40 .70 —0.40 ~0.90 0.00 -3.30 2.00
184 0.60 0.30 0.60 -2.00 2.00 =050 030 -0.40 0.90 0.40 —0.40 -0.40 0.70 -2.10
s 2.10 0.40 0.80 -2.80 3.50 0.00 0.40 -1.80 5.00 1.00 -2.80 -3.30 =770 1.20
S 0.80 0.10 ~0.30 -6.10 370 1.00 (.20 0.70 1.50 -1.20 -1.40 0.40 0.80 2.90
N 4.20 0.30 1.00 —4.30 190 -1.00 0.10 0.20 1,70 0.60 0.40 0.60 -0.50 -3.00
1S 530 0.70 1.10 =570 310 -1.00 0.90 0.60 1.90 -0.10 -0.20 1.30 —0.50 -0.50
e 6.50 0.80 1.40 -7.00 4,10 090 0.80 1.50 1.80 2.70 0.60 1.50 ~1.50 1.50
53 9.00 1.30 0.70 —3.50 2.60 1.00 0.90 0.40 0.20 0.20 0.70 0.20 020 .50
254 0.90 1.60 1.00 -3.40 280 -1.60 —0.70 0.50 2.30 -0.90 -0.60 060 -1.30 (.20
285 0.70 2.60 2.10 -0.60 4806 020 1.50 1.00 —0.20 0.70 1.50 1.10 1.90 -1.00
Y -2.00 3.10 1.60 1.60 5.10 0.80 -0.20 —0.10 0.90 -1.60 1.10 0.50 040 -1.80
2 —4.80 4.10 2.10 0.40 9.50 1.40 0.60 -1.60 -1.60 0.20 1.50 0.80 -1.00 ~2.50
35 0.70 0.00 -0.10 0.00 1.30 — — — — — — — — —
352 16.50 1.10 0,10 -2.30 570 5.10 1.50 2.50 -4.50 4.80 0.60 —0.40 -1.80 =200
3Sg 0.70 370 L.10 —4.60 11.50 -3.30 1.80 0.00 0.30 0,20 1.60 —-1.30 -1.50 -1.00
453 .10 .40 2.00 -1.60 1.50 1.50 1.30 -1.50 -2.40 0.60 1.80 0.40 1.70 0.50
553 -0.50 040 0.90 —5.40 530 -150 140 0.00 —2.00 0.80 1.10 1.20 =2.10 040
5S4 —0.30 0.50 1.90 0.50 520 1.90 1.10 -1.20 2.00 —0.40 0.50 -1.60 2,20 -0.70
S5 1.60 0.20 1.00 -0.20 2.90 .60 0.80 -2.10 0.50 —-1.80 -1.60 -0.10 1.70 -1.50
S 2.60 0.30 1.70 ~1.60 380 -0.10 1.00 -1.60 0.50 —0.90 —.90 0.00 0.50 -0.50
58 2,50 0.10 240 -2.60 3.00 0.20 0.70 -0.70 0.50 —0.30 ~2.50 1.60 —0.50 ~1.20
55 470 -0.80 0.70 =3.00 530 060 -0.10 -1.90 1.20 -2.30 0.20 1.70 1.10 —-1.80
A 15.70 0.00 4,20 —-1.80 4.00 670 —0.10 -2.50 -1.19 1.80 -2.70 -0.30 —0.50 0.40
aSs 16.30 0.60 -0.20 ~1.10 400 =250 010 0.70 180 -1.50 -1.10 1.80 -1.30 -2.60
o8y 1650 -0.30 1.80 4.50 3.20 290 -1.00 -1.80 =7.00 -1.30 0.80 =2.00 0.30 —0.10
w2 2150 =250 -1.90 —2.20 560 -1.60 0.80 0.50 -3.30 -4.80 1.90 3.80 -1.00 -0.10
1Sz 1530 -1.00 3.30 -2.40 6.20 1.90 3.50 340 2.90 ~1.80 4.60 -1.90 -3.10 -1.00
1S 10.20 250 0.70 -4,70 4.20 0.60 0.20 -0.20 0,20 0.10 —4.00 -3.00 -2.00 3.00
1352 17.50  -0.60 0.50 -3.00 5.30 9.60 2.00 3.70 -0.70 -2.70 —2.20 1.80 1.90 -1.00
1353 17.10 2.20 -1.00 -8.50 2.80 0.30 2,60 4.00 1.20 —6.80 5.30 -0.70 1.30 -0.80

Estimates are in microhertz.

plets. This suggests that we should look to improve the covari-
ance matrix estimates by rescaling them by some multiplicative
factor o, Cot) =a*C, which translates in a meaningful way across
multiplets. In the present context, the coefficients are merely sur-
rogates of the data, and we are interested in the distribution of the
errors in the coefficients only insofar as they reflect our ability to
model the data. This suggests that the errors should be rescaled
relative to some notion of misfit to the data, Let & be the
estimated coefficient vector for a given multiplet and define misfit
to the data in the usual chi-square sense:

1@ =T b5, :)Yo, @) (15)
3 in

where @, (@;)=w,”! from (14). We find that for mest multiplets

the variation in the coefficients found in the synthetic experiments

can be encompassed by that perturbation to & which changes x* by

about 20%. Thus we find or for each multiplet such that

Y+a0.)= 1224

For example, for ¢S¢ =38, which is within the 3-5 range
prescribed by the synthetic experiments. For multiplets believed
to be coupled, we use 40% change in ¥* as the relevant
significance level. Errors calculated in this way are listed in Table
4. In the following, we report synthetic experiments which show
that these error estimates appear to be realistic. We must

emphasize that these "errors” merely represent our confidence in
the estimated coefficients. As shown in section 3.2.2, the estima-
tor that we use for coupled modes is not unbiased, and the error
estimates that we present are not to be interpreted as standard
deviations of a Gaussian distribution. The solution to the problem
of bias caused by multiplet-multiplet coupling is to generalize the
current technique to encompass coupled modes. This is theoreti-
cally straightforward and is described by Ritzwoller [19871. The
application of this technique will be given in the second part of
this paper. )

3.2.1. Uncoupled multiplets. Although the size of £(@) is
potentially quite large, many multiplets are very well fit with the
degrees 2 and 4 coefficients alone. Fits to the data are summar-
ized in terms of chi-square ratios and chi-square reductions in
Table 2. We tabulate these statistics for perusal by the reader,
although they are not very useful indicators of how well the data
are fit since a few extremely well fit or noisy recordings can dom-
inate the statistic. Thus one should not infer from the fact that the
7 ratio for ¢Sg is lower than for ¢S, that ¢S is fit better than (S,.
In fact, it is not, as Figures 3b and 10 show. The y* ratio is lower
since the signal level is higher for ¢S, than for ¢S4 For this reason
we plot the residuals for a number of multiplets in Figures 3—-10.
Figures 3 and 4 display amplitude spectra of the data and residuals
for the isolated low-frequency multiplets (S and |5, respectively.
In each plot, data amplitude spectra (top) are plotted so that peak
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TABLE 4. Erxror Estimates

¢ Ree] Imc] Reel Imef  ¢f  Ree! Imcf{ Rec Imci  Reci Ime]  Rec) Imcf
051 0.60 0.80 0.60 200 1.60 1.10 1.10 1.10 2.30 1.20 3.40 2.90 3.00 4,20
oy 0.50 0.30 0.50 0.60 0.50 050 0.40 (.50 0.60 0.60 0.90 0.80 1.70 1.50
s 0.60 0.30 0.50 0.70 (.50 0.60 0.40 (.60 0.60 0.40 0.60 0.50 0.80 0.80
oSe 0.60 0.30 0.40 0.60 0.50 0.60 0.30 0.50 0,40 0.40 0.50 0.50 0.50 0.70
o7 0.90 0.40 0.50 0.70 04.90 0.80 0.50 0.60 0.50 .60 0.60 0.60 0,90 0.80
s 0.60 0.20 0.20 0.20 0.60 0.40 0.10 0.20 0.20 0.30 0.20 0.20 0.40 0.30
ot 0.90 0.30 0.50 0.60 1.00 0.60 0.40 (.60 0.50 0.50 0.50 0.40 0.70 0.80
R 0.70 0.70 0.70 1.70 1.80 1.00 1.00 1,10 1.60 1.60 2.50 2.30 3.50 320
184 0.70 0.50 0.50 1.00 1.20 0.70 0.60 (.60 0.90 1.00 1.60 1.30 2.50 240
Ss 1.40 0.90 0.80 1.70 1.30 1.40 1.10 1.20 1.70 1.60 1.90 1.60 6.00 3.30
Se 220 1.50 2.40 2.70 1.70 2.40 1.70 2.60 2.20 220 2.80 2.70 3.80 320
187 1.40 0.60 1.00 1.60 1.00 1.30 0.80 1.10 £.30 1.00 1.40 1.00 1.80 1.60
Sy 0.80 0.30 0.50 0.80 0.60 0.80 0.50 0.70 (.60 0.60 0.70 0.60 .90 0.80
1S 3.60 0.70 1.60 3.90 2.50 2.20 1.00 1.80 2.10 1.50 1.50 1.70 2.60 2.50
284 0.90 0.70 0.60 0.80 0.70 1.00 0.80 1.00 1.30 1.20 1.20 1.40 1.10 1.10
25y 1.10 0.60 0.70 0.90 0.90 1,20 0.70 0.80 0.80 0.70 1.10 0.90 0.80 0.90
255 1.60 0.80 1.10 150 1.40 1.10 0.80 0.90 0.90 0.80 1.00 1.10 1.10 140
Ss 1.30 0.60 1.10 1.30 1.30 1.20 0.70 1.10 1.00 0.80 1.10 1.00 1.30 1.70
2Sg 2.00 0.60 1.00 2.10 1.20 1.40 0.70 1.10 1.40 0.90 1.10 1.00 1.50 1.50
a8 0.70 0.30 0.30 0.40 0.40 — — — —_ — — — — e
282 1.60 1L.90 1.20 2.40 2.00 1.50 2.70 1.70 2.30 1.90 0.90 1.30 1.10 1.20
g 1.50 0.80 1.10 1.00 1.50 1.30 0.80 1.00 1.10 1.00 1.10 1.00 1.00 1.30
453 1.50 0.80 1.00 1.70 1.40 1.60 1.50 1.40 1.60 1.80 1.60 .30 1.50 1.50
gy 1.20 .70 1.10 1.30 0.80 1.40 1.30 1.40 1.30 1.20 1.50 1.10 1.30 1.20
o 1.10 0.60 1.00 1.10 1.00 1.30 0.90 1.10 1.40 1.10 1.40 1.50 1.40 1.50
s 1.10 0.50 0.70 1.10 1.00 1,10 0.70 0.80 1.00 0.90 0.90 1.10 1.20 1.10
S 1.00 0.50 0.70 1.10 0.70 0.90 0.7¢ 0.80 0.90 0.70 0.90 1.10 1.00 1.10
S 1.30 0.50 0.70 1.70 1.00 1.00 0.60 0.70 0.90 0.70 0.70 .80 0,90 1.10
Sg 4.40 1.30 1.70 3.70 4.00 3.30 1.60 1.80 2.30 2,70 210 2.60 3.10 3.60
33 1.10 0.90 1.00 1.30 1.20 1.50 1.30 1.30 2.00 1.70 2.60 170 1.40 1.20
55 1.60 1.30 L.10 1.50 1.80 1.70 1.80 1.80 2.90 2.50 2.20 2.00 1.90 1.60
0¥ 2.40 220 2.50 3.10 3.10 1.90 3.20 2.20 4.20 440 3.80 4,40 1.50 1.80
ws2 220 1.70 1.70 1.90 1.10 0.80 0.80 0.80 1.60 1.00 1.90 2.00 0.40 0.50
1S4 1.50 0.80 0.60 1.30 1.10 1.00 1.10 1.00 240 2.00 1.90 190 1.40 1.10
nSs 1.50 0.90 1.00 1.00 1.30 1.60 1.10 1.30 2.00 1.50 2.00 3.10 220 1.60
1352 1.80 1.00 0.90 1.40 1.00 0.50 0.90 0.60 1.30 0.90 (.90 0.90 0.40 0.40
1393 1.70 1.20 1.00 1.50 1.10 1.30 1.40 1.00 1.90 1.80 1.50 2.00 1.00 0.90

Estimates are in microhertz.

heights are normalized and are compared with those of the residu-
als (bottom). The residual spectrum is the amplitude spectrum of
the difference between the data and the synthetic seismogram
computed with the degree 2 and 4 coefficients tabulated in Table
3. The residuals plotted in this way accentuate both amplitude
and phase differences between the data and synthetic spectra.
Figures 3a and 4a show the data and residuals for a few high
signal-to-noise recordings. Most of the data set is displayed in
Figures 3b and 4b. On average, the amplitude and phase spectra
for these and most other isolated, low-frequency multiplets are fit
at approximately the ambient noise level, The source of the resid-
val is therefore difficult to identify but is probably small enough
not to cause serious biasing. However, the residual for a few of
the the high signal-to-noise recordings shown in Figures 3a and
4a is above the ambient noise level. Figure 5 contains the data
and residual plots for a synthetic experiment which shows that
realistic higher-order structure {degrees 6 and 8 here) could pro-
duce residuals at this level. The amplitude of the bias caused by
higher-order structure is a function of the magnitude of the
higher-order coefficients and the correlation between the columns
of the partial derivative matrix associated with the specified and
unspecified coefficients. Synthetic experiments with reasonable
amounts of higher-order structure indicate that bias from this
source should be small, of the order of 0.1-0.2 4Hz (see Table 5).

Furthermore, regressions run with the inclusion of higher-order
structure do not produce perturbations in lower order coefficients
larger than the errors listed in Table 4.

Naot all very low frequency multiplets are as well fit as (54 and
55 As Figure 6 shows, signal level is low and misfit is high for
the anomalous mode 15, The difficulty in fitting the data is prob-
ably due to errors in the radial eigenfunctions for this mode.
Although it appears clear that 55 is anomalously split, inferences
from poorly fit modes such as this must be made only with
extreme caution, and it is not uniikely that the errors listed in
Table 4 are underestimated for this mode.

Conditions change at higher frequencies where signal-to-noise
levels for the targeted multiplets worsen, errors in the source time
functions become more significant, multiplets are more likely to
overlap and potentiaily couple, and errors in the radial eigenfunc-
tions are expected for the anomalous muliiplets. Nevertheless,
many muitiplets are relatively well fit. Figure 7 shows the data
and residuals for 45 recordings of the isolated anomalous multi-
plet ¢5,. The regression here is fully specified since |55, is sensi-
tive only to degrees 2 and 4 structure, but the sensitivity of 145, to
the poorly constrained region near the ICB implies that it is not
unlikely that the radial eigenfunctions are less reliable than for the
mantle sensitive multiplets. In fact, the fit to all the anomalous
modes is not as good as might be expected from experience with
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TABLE 5. Synthetic Experiment to Determine The Effect of Coupling and Higher-Order Structure
on the Coefficient Estimates

e uH Ree) (wHz) ImcJ @tHz) Rec?@Hz) Imc? @Hz)
Input  Observed Input Observed Input  Observed Inpur  Observed Input  Observed

oS¢ 128 1.24 0.47 (.43 0.24 0.27 -2.00 -1.80 0.64 0.60
Sg 152 0.72 0.55 -0.12 0.02 ~0.08 -2.45 —2.47 045 0.14
e 137 -1.34 0.56 0.78 -0.30 -0.63 —2.20 -1.36 0.29 1.55
S5 033 1.40 1.01 0.70 -0.27 1.20 -1.10 ~1.04 1.64 2,16
Se 112 -2.44 0.76 1.77 0.00 —4.34 -237 =391 0.96 1.26
254 151 220 0.76 1.30 0.37 0.00 -1.99 -245 1.22 121
285 0.56 1.37 1.16 -0.26 -0.15 —0.44 -0.44 0.65 2.02 0.48

Only degree 2 coefficients are tabulated.

mantle modes. Apparently, the spherical Earth model is inaccu-
rate in the core in some way. Difficulties in fitting the degenerate
frequencies of the anomalous multiplets also point to this conclu-
sion (G. Masters and F. Gilbert, unpublished manuscript, 1987).
We discuss this further in section 4.3. Since the way in which
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Fig. 11. Same as Figure 10, but for an experiment performed with syn-
thetic data for S5 like that described in the caption for Figure 5 bur with
Coriolis coupling between ¢S¢—oT 1g. The residual levels from the real
data (Figure 10) and the synthetic data are qualitatively similar, indicating
that the large residuals for 48 ¢ likely result from Coriolis coupling to o7 ;.

current core models are inaccurate is not known, the effect on the
coefficient estimates cannot be determined. To try to compensate
for this, we use a 40% change in ¥* as the significance level for
the anomalous multiplets, but confidence in the coefficient esti-
mates for these modes awaits more accurate spherical models.
Interpretation is further complicated when two or more multiplets
overlap in frequency. Overlapping multiplets may be uncoupied
if their @ values are appreciably different or if they sample the
Earth in very different ways. An example of this is the pair
118 4—1352, whose Q values differ by approximately a factor of 3.
It is difficult to estimate the interaction coefficients for these two
multiplets simultaneously since the optimum time series length for
392 is much shorier than for S, However, the coupling
between these multiplets is probably very weak and synthetic
experiments show that the passive effect of 1,5, on the estimation
of the coefficients for ;54 is not great, probably less than 0.5 uHz
for each coefficient, The fact that a contaminating multiplet
shares the fitting band with 1,5, explains why it, as well as 1,85,
1353, and ¢S5, are not as well fit as the purely isolated multiplets
1057 and 1385,

3.2.2. Weakly coupled multiplets. We consider a number of
multiplets which possess possible coupling partners: e.g.,
183—35 1 185254 156— 255 258483 oS3~ 0T, 0S9—0T 10, etC.
With the exception of |S;—45, residuals for each pair are gen-
erally greater than for isolated multiplets with approximately the
same signal-to-noise level, implying that it is likely that the pairs
are coupling. We discuss two examples here. First, the pairs
1S5-285, and 1S5—255 each overlap, and coupling could occur
between the members of each pair through degrees I and 3
aspherical structure. However, S and »5s, being closer in @,
should couple more efficiently than §s and -84 In agreement
with this expectation the residuals for ;5¢—255 are appreciably
larger than for S5;—>5. Figure 8 shows the data and residual
plots for 55 of the recordings of |§5—254. Table 5 presents the
results of a synthetic experiment to determine the effect of cou-
pling and higher-order structure on the coefficient estimates for
these multiplets. Forty noise free synthetic seismograms com-
puted with the inclusion of coupling between nearby neighbors
were constructed using the upper mantle model M84A (degrees
1-8) and the lower mantle model LO2.56 (degrees 1-6) [Wood-
house and Dziewonski, 1984; Dziewonski, 1984] (model DW?2
defined in section 4) and were then inverted only for the degrees 2
and 4 interaction coefficients. The etrors in the coefficient esti-
mates are at the 0.5-1.0 g Hz level for ;S5—»5, and the 1-2 #Hz
level for 1S5 and are reflected in the error estimates in Table
4. For comparison, Figure 9 shows the data and residuals for the
synthetic seismograms for ;55— ,5,. The fact that the synthetic
data are fit more peorly than the real data indicates that DW2
predicts greater coupling for these multiplets through degrees 1
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Fig. 12. Observed cf coefficients plotted versus predicted values. (¢)
Reference model ts Ms2. (b) Reference model is Ms2 together with
aspherical structure on the CMB, ICB, and isotropic heterogeneity in the
volume of the inner core.

and 3 structure than exists. The results of this synthetic experi-
ment should therefore be considered conservative. Second, we
consider possible Coriolis coupling between low harmonic degree
spheroidal and toroidal modes. Coriolis coupling between
spheroidal and toroidal multiplets which differ in harmonic degree
by 1 should increase as the spheroidal-toroidal branch crossing is
approached at 8| — 7T 2. This is what is observed, and in partic-
ular, the residuals for 4,54 are lower than those for ¢S¢ which are
shown in Figure 10. Figure 11 displays the synthetic data and
residuals for the coupled pair ¢S9—o7 1y which are in qualitative
agreement with the results with the real data. The errors in the
estimated coefficients for (S and (S in the synthetic experiment
are also contained in Table 5 and are approximately 0.5 and
1.0 Hz, respectively. These are probably realistic errors and are
reflected in the values tabulated in Table 4. Coriolis coupling and
along-branch coupling for fundamental spheroidal modes above
harmonic degree 9 become strong enough to vitiate completely
the results with the current technique. We therefore exclude them
from this analysis. The estimation of accurate interaction
coefficients for any of these higher-order muliiplets requires the
extension of the technique to include multiplet-multiplet coupling.
We are optimistic about the application of the generalized tech-
nique described by Ritzwoller [1987] to these high signal multi-
plets.

In conclusion, there are many sources of error which affect and
could potentially bias the coefficient estimates found in Table 3.
The relative importance of these sources of error varies among
multiplets, but in most cases the error estimates listed in Table 4

RITZWOLLER ET AL.; CONSTRAINING THE EARTH'S ASPHERICAL STRUCTURE

appear to encompass the expected perturbation in the estimated
coefficients.

4. INTERPRETATION AND INFERENCE

The 38 multiplets for which interaction coefficients have been
estimated and listed in Table 3 partition naturally into two groups:
the 10 anomalously split multiplets (282, 154, 653, §55, 53, 1052,
184 155, 1282, 1353) and the remaining normally split, mantle
sensitive modes. These groups are distinguished by the size of
their ¢ coefficients which are very large for the anomalous
modes. Figure 12a shows the observed ¢! coefficients for afl 38
multiplets compared with the ¢ coefficients computed for the
aspherical model Ms2 described below. The cloud of observa-
tions above the diagonal line belongs to the anomalous modes and
cannot be fit with mantle structure alone. Ritzwoller et al. [1986]
argued that the source of anomalous splitting, in all probability,
lies in the core. In this section we first discuss the inversion of the

cpt coefficients for oS branch

Cgo {uHz)

real c,' (uHz)

imog ¢t (uHz)

real c,2 {uHz)

harmonic degree

Fig. 13. Estimated degree 2 coefficients and error estimates plotted versus
harmonic degree along the fundamental mode branch. The dashed and
dotted curves represent the predicted values from DW1 and DW2, respec-
tively, and the solid curve represents the values from our model Ms2.



RITZWOLLER ET AL.: CONSTRAINING THE EARTH'S ASPHERICAL STRUCTURE

oyt coefficients for ;S branch
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Fig. 14. The |S branch (same as Figure 13).

degree 2 interaction coefficients from the 28 mantle sensitive
modes for mantle structure, comparing the retrieved model with
the models M84A [Woodhouse and Dziewonski, 1984] and
LO2.56 [Dziewonski, 1984]. Afterward, we briefly discuss
anomalous splitting.

4.1. Consistency of Estimated Interaction Coefficients
With Existing Mantle Models

The coefficients presented in Table 3 are insufficient, both in
number and accuracy, to resolve uniquely the low-order aspheri-
cal structure of the mantle. Therefore we consider only models
which are smooth functions of radius. The degree 4 coefficients
are, on average, smaller than the associated errors in Table 4 so
we confine attention to degree 2 structure alone, (More accurate
estimation of degree 4 interaction coefficients will require more
recordings per multiplet than are currently available.) For ¢S, the
lowest-frequency observed mode, the estimated degree 2
coefficients are very poorly censtrained and are therefore not
listed in Table 3. As argued in section 3, since the sensitivity to
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aspherical structure changes smoothly along a single dispersion
branch, a smooth model will fit the interaction coefficients only if
the coefficients vary smoothly along each branch, Figures 13-16
show the degree 2 coefficients and errors plotted along the o5, S,
28, and 5§ branches. Figure 17 represents the degree 2
coefficients determined from multiplet center frequency observa-
tions for the fundamental surface wave equivalent modes
oS 20— 08 4n [Smith et al., 1987]. Since these multiplets are all dom-
inantly sensitive to structure in the mantle and, on average, the
coefficients vary smoothly along each branch within the estimated
errors, the coefficients should be able to be fit with a simple model
of mantle structure, As will be discussed later, a few of these
multiplets are also sensitive to core structure, especially in the top
of the outer core. They will therefore also have to be treated
further when hypotheses concerning the cause of anomalous split-
ting are considered.

As discussed in section 1, the comparison of the estimated
coefficients with the coefficients predicted by existing models of
aspherical structure is complicated by the fact that the computa-
tion of the ¢! with (6) requires that the model be expressed as a

c,t coefficients for ;5 branch
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Fig. 13. The »$ branch (same as Figure 13).
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Fig. 16. The § branch (same as Figure 13).

function of both & and 4 {er v, and v,), as well as p, rather than
simply as v, or v, alone. The way in which simple functions in v,
or v, should be translated into a form useful in low-frequency
seismology is subject to debate. Experimental mineralogical evi-
dence taken at upper mantle conditions suggests that the following
relationships may be appropriate:

dlnv, N
dlnp

{We call the model produced by M84A and LO2.56, using (16},
DW1.) As described in section 1, the global relevance of these
relationships is questionable, and there are those who advocate a
scaling in which the constant in the right-hand equation in (16) is
approximately doubled. We call this model DW2. Since the
upper mantle model M84A is purely v, DW1 and DW?2 differ
only in the lower mantle where perturbations in v, and p are twice
as large for DW?2 than for DW1.

The coefficients predicted by DW1 and DW2 are represented
by the dashed and dotted curves in Figures 13-17, respectively.
The fit to most of the coefficients along the (S and |§ branches in

(16)
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Figures 13 and 14 is dominated by the lower mantle parts of DW1
and DW2. The improvement in fit to the estimated coefficients
afforded by DW2 is confined to a few coefficients, deriving prin-
cipally from the ¢? and real part ¢ coefficients along the 4§ and,
to a lesser degree, the ;S branches. The improvement in fit to
these coefficients can as easily be accommodated by a CMB per-
turbation as a change in scaling. Except for these cases, DW1 and
DW?2 predict very similar coefficients. The misfit along the ,S
and 5§ branches in Figures 15 and 16 and to the higher-degree
fundamental mode coefficients (Figure 17) is common to both
models. 1t is encouraging to note that in nearly every case the
predictions by DW1 and DW2 are of the right sign and trend
along each branch.

Table 6 summarizes the fit to the coefficients from the mantle
sensitive multiplets and from the surface wave multiplets with
DW1 and DW?2. Fit is represented by y*:

xz = Z (Ck %1'”)2/0';‘2
k

c:2t coefficients for the fundamental modes

20 25 30 35 40

harmonic degree

Fig. 17. Coefficients estimated from the center frequency measurements.
[Smith et al., 1987] for 4§ 45— S 40 (same as Figure 13).
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TABLE 6. Misfit Statistics for Three Mantle Models

140 Mantle Mode 105 Fundamental Mode
Coefficients Coefficients Total
Variance Variance Variance
7% Reduction, % x* Reduction, % ¥*  Reduction, %
DW1* 469 52 831 89 1300 85
DwW27 328 66 1204 84 1532 82
Ms2i 111 90 64 99 200 98

# L0256 and M84A with v, :v, ratio equal to 1.235.
1 L0O2.56 and M84A with v, : v, ratio equal to 2.50.

£ Qur model.

where ¢, is the observed coefficient (found in Table 3), c¢f is the
coefficient predicted by the model, and &, is to coefficient error
(found in Table 4) for multiplet k. (This statistic represents the
misfit of 2 mode! to the interaction coefficients and should not be
confused with ¥*(€) in (15), which represents the size of the resid-
ual spectrum.) We seek models which, on average, predict interac-
tion coefficients approximately 1o from the observed coefficients.
For an acceptable fit, y*=K, where K is the number of
coefficients used. The total x> of the 28x5=140 degree 2
coefficients for the mantle sensitive multiplets relative to DW1 is
469 and is 328 relative to DW2. Similarly, y* of the 21x5=105
surface wave multiplets is 831 and 1204, respectively. Total vari-
ance reductions relative to the RH model (for which all
coefficients are zero) are 85% for DW1 and 82% for DW2. The
reduction in variance by these models is large; however, with
either scaling relationship a lot of signal remains to be fit, and it
seems worthwhile to consider constructing smooth models which
do fit these data in detail.

4.2, Mantle Models

We first tumn attention to aspherical structure in the mantle. As
data we use the degree 2 interaction ceefficients from the 28 low
harmonic degree mantle sensitive muitiplets (Table 3) and the
coefficients from the 21 surface wave multiplets [Smith et al.,
1987]. We also require that models fit the geoid [Lerch et al.,
1985]. We follow Gilbert et al. [1973] and construct smooth
models between seismic discontinuities by minimizing the sum of
the Euclidean norm of the second radial derivative of dm/(r} and
the Euclidean norm of the boundary perturbations. This pro-
cedure is summarized in the appendix. The number and quality of
data are insufficient to solve independently for all three functions
of radius &v;, 8v,, and . We use the scaling relationships in
{16) to produce combined representers and present models only in
relative shear velocity dv; /v, for each order of degree 2 structure.

The simplest model of mantle structure would be smooth
across the entire mantle, but we have been unable to produce a
nonoscillatory smooth medel which will fit all of the data. The
reason lies in a competition between the surface wave coefficients
and the geoid, apparently requiring oscillatory upper mantle struc-
ture at some azimuthal orders to resolve the conflict. We consider
the mantle to comprise three layers: the lower mantle
(3484-5700 km), the transition zone (5700-5950 km), and the
uppermost mantle (5950-6360 km). We allow the constructed
aspherical models to jump discontinuously at the boundaries
around these regions irrespective of the existence of first-order
discontinuities of the aspherical model at the layer interfaces.
These jumps are introduced merely as a mathematical conveni-
ence and are not necessary attributes of models which fit the data.
We are able to fit all the data with volumetric mantle structure

alone, but the mantle is surrounded by two first-order discontinui-
ties which potentially also possess aspherical perturbations. The
Moho possesses a large degree 2 pattem due to variability in cru-
stal thickness between continents and oceans. Whether long-
wavelength aspherical boundary perturbations can exist on the
CMB is currently under debate [Gwinn et al., 1986; Creager and
Jordan, 1986b; Morelli and Dziewonski, 1987)]. Observational
evidence for the existence of global first-order discontinuities at
400 and 670 km is subject to contention [Silver et al., 1983] and
spherically symmetric models exist covering both cases (e.g.,
model 1066A or model 1066B and PREM}).

An unfortunate trade-off exists between aspherical boundary
and volumetric perturbations. For example, Masters et al. [1982]
described how the 21 surface wave coefficients alone could be fit
with a wide variety of models, including a simple transition zone
volumetric model or aspherical boundary perturbations on both
sides of the transition zone. This ambiguity can only be resolved
if either tight a priori bounds on the allowable boundary perturba-
Hons exist or if many different kinds of modes sample and thus
constrain the region(s) of interest. Similar, though less extreme,
ambiguities remain in the cutrent study. A priori information on
crustal structure is available in the form of tectonic regionaliza-
tions, although existing regionalizations differ substantially.
Woodhouse and Dziewonski [1984] constructed a seismic crustal
correction relative to preliminary reference earth model (PREM)
from the regionalization of Mauk [1977). Relative to the data in
the current experiment, this correction is dominanted by a 6-km
mantle bulge on the Moho under the Pacific Ocean (Figure 18a).
which strongly imprints the data, making the surface wave multi-
plets and the geoid harder to fit especially for Im(Y$) structure.
‘We report here only models in which the Moho is unconstrained
by a crustal correction, and due to the previously mentioned
trade-offs {on top of the poor intrinsic resolution of the data set),
uppermost mantle structure cannot be inferred unambiguously.
Lowermost mantle structure is only weakly dependent on whether
CMB perturbations are allowed in the inversion, and we report
models in which the CMB is free as well. When the CMB is
fixed, lowermost mantle structure is increased slightly in ampli-
tude.

Much more disquieting is the strong dependence of middle
mantle structure on the size of the aspherical perturbation allowed
on the 400- and 670-km discontinuities. (To construct aspherical
perturbations to these boundaries, we use 1066B as a radial refer-
ence model since it, unlike 1066A, possesses first-order discon-
tinuities there, Since PREM has smaller jumps at 650 and 400 km
than 1066B, aspherical models referenced to PREM would have
to have larger perturbations on these boundaries to produce the
same effect as those referenced to 1066B.) The nature of these
discontinuities is not as well understood as the Moho or the CMB,
but presumably these two features are at least in part associated
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Fig. 18. («) Comparison between the Moho perturbation we estimate and (b) that of the crustal correction of Woodhouse and

Drziewonski [1984]. Contours are in killometers.

with phase transformations; (olivine — spinel) at 400 km [Ring-
wood, 1975] and, more speculatively, (spinel — perovskite +
magnesiowiistite} and (ilmenite — perovskite) at 670 km [Lin,
1979; Yagi et al., 1979; Ito and Yamada, 1982]. Any perturbation
which affects the local pressure or (probably more importantly)
temperature regimes can produce lateral variations in the location
of the phase changes. Figure 19 shows two medels which fit the
¢d coefficients, one without structure on these boundaries (dashed
ling) and one with approximately 30 km on both boundaries (solid
line). In fact, the model without the boundary perturbations fits
the data quite a bit better, but unless structure of this magnitude
can be safely ruled out on these discontinuities, we cannot even
unambiguously infer the qualitative nature of mantle structure
over large stretches of the middle mantle. (It should be peinted
out that this problem is not unigue to inversions with this data set
but is probably common to other inversions with long-period sur-
face wave data.)

Creager and Jordan [1986a} argue that the total aspherical per-
turbation to the 400- and 670-km discontinuities produced by slab
penetration is probably less than 100 km. The degree 2 part of the
slab component of the regionalization of Okal [1977], which con-
tains a substantial slab contribution, is less than 5%. It is thére-
fore unlikely that more than 5 km of perturbation to these discon-
tinuities should arise due to slab penetration alone at degree 2.
Hager [1984] argued that if slabs do not penetrate the 670-km
boundary and pile up above it, then perhaps more than 60 km of
deflection could occur and would be distributed over a wider area
than if the slabs penetrated into the lower mantle. Whether this

area would be greater than the 5° x 5° slab region in Okal’s
regionalization is debatable, but if these two mechanisms are the
principal potential causes of boundary deflection in the middle
mantle, then a 5-10 km maximum at degree 2 is probably reason-
able. For this reason, since a 5-km perturbation to these boun-
daries does not substantially change the inferred volumetric struc-
ture, we report further only models without perturbations to the
400- and 670-km boundaries. To the extent that the reader finds
this argument unsatisfying, inferences about middle mantle struc-
ture must be met with suspicion.
~We call the smooth degree 2 model (constructed with a free
Moho and CMB but with fixed 670- and 400-km discontinuities)
Ms2 (for mantle, s=2). Ms2 is shown in Figure 20 (solid line)
with DW1 (dashed line) plotted for comparison. The fit to the
data is summarized in Table 6. The total x* produced by Ms2 for
the 140 degree 2 coefficients is 111, and the %2 for the 105 degree
2 surface wave coefficienis is 64 for a total variance reduction of
98%. _
The lower mantte part of Ms2 is qualitatively similar to DW1.
Both are dominated at most depths by ¥¥ andfor Y7 hetero-
geneity, but the two models differ substantially in amplitude. The
lower mantle part of both models is characterized by the concen-
tration of structure near the boundaries {CMB and 670 km), Ms2
and DW1 are qualitatively very similar in the lowermost mantle
and contour plots of the two models nearly overlie (Figure 21).
Neither model shows much structure in the mid-lower mantle.
Structure does differ considerably near the top of the lower man-
tle, however, with Ms2 being dominated by ¥ and DW1 by a
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(dashed line) the inclusion of aspherical boundary structure on the 400 and

670 km discontinuities. The c§ coefficients are fit better without the large

boundary perturbations, but this illustrates the formal trade-off between
volumetric and boundary perturbations which troubles interpretation.

combination of real part Y7 and ¥§ of opposite sign from Ms2
(Figure 22). This comes as no surprise since DW1 is poorly con-
strained in this region. However, comparisons must be performed
over broad regions due to resolving widths certainly being no less
than 500 km for the data we use here. For example, it is likely
that our data have difficulty discriminating between the Y? parts
of Ms2 and DW1 near the 670 km discontinuity, The two models
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are quite different qualitatively, one (DW1) with large negative
structure confined to the transition zone and the other (Ms2) with
the negative structure in the lower mantle. However, the averages
over a region several hundred kilometers on either side of the
discontinuity are approximately the same. Nevertheless, the sys-
tematic misfit-to the ¢ coefficients for 8 20— o5 30 by DW1 in Fig-
ure 17 implies to us that at least some components of this ¥
structure must be found in the lower mantle. We will pursue this
further when we generalize speciral fitting to encompass coupled
multiplets. The existence of a relatively large negative Y9 struc-
ture near the top of the lower mantle can be constrained with the
c? coefficients from o§55-0519 which will result from this
analysis.

We do not wish to interpret upper mantle structure due to the
simplicity of its representation in Ms2, although there is qualita-
tive agreement with DW1 (Figure 23). We also do not interpret
Moho structure nor structure in the uppermost mantle due to
trade-offs between these features. However, for comparison, Fig-
ure 18 exhibits the similarity between the Moho perturbation that
we estimate and the Moho correction devised by Woodhouse and
Dziewonski 11984]. The estimated Moho perturbation probably
agrees with the Moho correction to within the uncertainty in the
correction. We take the similarity between the inferred and the
model Moho perturbations to indicate that it is not likely that cru-
stal structure contaminates our model below the upper mantle.
Since a great deal of interest has recently focused on CMB undu-
lations, it may be worth noting that we estimate approximately
3 km of structure on the CMB and that its pattern is similar to
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lowermost mantle volumetric structure (Figure 21c). That is,
depressions on the CMB appear to approximately underlie
fast/dense lower mantle regions. For comparison with Gwinn et
al. [1986] we note that the ¥ components of the CMB undula-
tion is approximately 1km. However, the data could be fit by
allowing this value to vary by several kilometers in either direc-
tion as long as the lowermost mantle is free to absorb more struc-
ture.

4.3. Core Models

Although Ms2 does not fit the nonaxisymmetric part of the
anomalous muitiplets perfectly, it goes a long way in that direc-
tion, and we feel that we are not warranted to infer anything about
nonaxisymmetric core heterogeneity. However, the ¢J
coefficients for the anomalous multiplets are extremely poorly fit
by Ms2, as is shown in Figure 12a. Figure 124 shows the fit to all
38 ¢f estimates by Ms2. A c¢loud of observations, all for
anomalous modes, with Targe observed ¢f values is very poorly
fit. We seek a perturbation to core structure which increases all
the model ¢{ values, uniformly translating this cloud of points to

the right to intersect the diagonal line. A great many types of
models go part of the way to this end. Improvements can be
achieved by the inclusion of any of the following structures; iso-
tropic perturbations in the inner or outer core, boundary perturba-
tions to the ICB and CMB, and also apparently anisotropic pertur-
bations to the inner core [Woodhouse et al., 1986]. The last struc-
ture is the only one on this list which appears to allow the very
ancmalously split but poorly excited multiplet 35, to be fit. How-
ever, the amount of structure necessary in every case is sufficient
to cause consternation by most. For example, Ritzwoller et al.
[1986] argued that outer core structure is probably physically
unrealistic, although they found that a simple outer core structure
could be found to fit the singlet frequencies of most anomalous
multiplets. It has, further, been suggested by Giardini et al.
[1987] that structure in the top of the outer core, for example, in
the form of a chemical boundary layer [Creager and Jordan,
1986b], can be dismissed on purely observational grounds citing
the systematic misfitting it would cause for 38§, and ,S,. This
argument highlights the dependence of inferences about the core
on a priori information about the mantle. Their argument is true if
DW2 were the lower mantle model, but other lower mantle
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Fig. 22. Comparison between volumetric perturbations (8v, /v in %) in (@) our model Ms2 and (b) DW1 near the top of the lower
mantle at 750 km depth. This is the region where these two models differ most appreciably.

models can be found which allow these two modes to be fit in the
presence of outer core structure and still fit the remainder of the
coefficients better than DW2. The question then reduces to how
well these models fit the ISC data and other seismic data. This
question continues to receive more work.

Independent of which mantle model one chooses, the
anomalous multiplets are difficult to fit. For example, Figure 120
shows the fit in which 10 km of structure is on the ICB, 3 km on
the CMB, and of the order of 1% lateral density variation in the
inner core. Irrespective of the physical reasonableness of this
model, many, but not all, of the coefficients are fit better. This is
characteristic of most of the models we have considered to date
with particular problems associated with fitting the ef coefficients
of ,5; and 38, Since a choice between competing models to
explain the remaining anomalous multiplets would be ad hoc, we
present no core model here. The resolution to the problem of
anomalous splitting will await more and different data and
confidence in the mantle part of the model.

It is interesting to note a parallel between core models for the
present data set and core models of the underlying monopole. Ina
recent stady, G, Masters and F. Gilbert (unpublished manuscript,
1987) used 350 degenerate frequency measurments to obtain
better monopole models, They were able to reduce chi-square
(xz) to a value of 500, but to achieve that value, it was necessary
to allow the model to be transversely isotropic in all solid regions
and to have additional discontinuities near the ICB and CMB.
Sorting the modes on ray parameter (p =((+'2)e is the ray

parameter associated with a mode) revealed shat 300 modes with
p >po had x*=350 and 50 modes with p <py had > =150, where
pol=rofv,(ro)) corresponds to the middle of the outer core. That
is, mantle modes and modes sensitive to the upper outer core are
acceptably well fit, but modes sensitive to the lower outer core
and the inner core are very poorly fit.

An acceptable explanation of the results of modeling the mono-
pole has not been presented, but the results give one pause when
thinking about aspherical core models. If the monopole model is
incotrect in its cores, then the eigenfunctions of its core sensitive
modes may also be incorrect. Since these eigenfunctions are used
as a basis for studying aspherical core models, it is possible that
the difficulty in finding simple aspherical core models which fit
the free oscillation data well and the difficulty in finding any
monopole core model that acceptably fits the degenerate frequen-
cies of the core sensitive modes are related,

3. SUMMARY AND CONCLUSIONS

Until recently, techniques devised to infer aspherical structure
have been based on asymptotic formalisms which reduce, in
essence, 10 the analysis of modal frequency (or temporal phase).
A more nearly complete use of long-period data would include
amplitude information as well. This study reports on the sys-
tematic application of one such technique to a number of low har-
monic degree multiplets believed to be no more than weakly cou-
pled to other nearby multiplets.
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For a multiplet genuinely isolated in complex frequency, the
effect of even-order aspherical structure on the splitting matrix
can be represented by a discrete set of complex coefficients.
These coefficients determine the interaction between the singlets
within the multiplet, and therefore we call them interaction
coefficients. Together with a set of radial eigenfunctions com-
puted from a spherical Earth model and an estimated moment ten-
sor, the interaction coefficients completely represent the effect of
aspherical structure on the seismic displacement field. The
interaction coefficients can be estimated by iterative spectral
fitting, a Newton’s method technique the goal of which is to
improve the coefficient estimates by minimizing the spectral
residual. These coefficients linearly constrain aspherical structure
and can be used as consistency checks on existing models or as
data in inversions for aspherical structure, either by themselves or
with other data. We applied iterative spectral fitting to approxi-
matley 350 IDA and GDSN recordings taken from 18 large or
deep events and estimated the degrees 2 and 4 interaction
coefficients for 38 low harmonic degree (/<9) multiplets, 28 of
which are dominantly sensitive to the mantle and 10 of which are
anomalous. The degree 2 mantle sensitive coefficients behave
smoothly along the low radial order dispersion branches (;S, |S.
25, 58), indicating that a smooth mantle model exists that will fit
them. Synthetic experiments clearly demonstrate that representa-
tion errors (e.g., coupling, unspecified higher-order structure,
errors in source mechanisms, errors in the radial eigenfunctions
due to inaccurate spherical earth models, etc.) do perturb
coefficient estimates and traditional error analyses produce overly

optimistic error estimates. We present an error analysis, based on
misfit, which appears to generate realistic error estimates. The
estimated coefficients and errors are tabulated for use in future
inversions, Since the degree 4 coefficients lie, on average, below
the estimated errors, we do not interpret them.

Systematic misfit above ambient noise is symptomatic of errors
in assumptions and approximations which can lead to biased
coefficient estimates. Genuinely isolated mantle sensitive multi-
plets can be fit exceedingly well. Misfit to anomalous multiplets
may primarily result from errors in the radial eigenfunctions.
There are also difficulties in fitting the degenerate frequencies of
the anomalous modes as well as other modes sensitive to core
structure with spherical models. This result suggests that spheri-
cal core models are somehow in error, but an acceptable explana-
tion has not yet been found. If the spherical model is incorrect in
the core, then errors in the eigenfunctions computed from the
model translate directly into errors in the interaction coefficients
computed from aspherical models. If these errors are large, the
interpretation of the estimated coefficients in terms of aspherical
structure may be misleading.

Misfit fo mantle sensitive multiplets is dominated by
unspecified higher-order structure and coupling. At least for the
multiplets considered here, the perturbing effect of higher-order
structure on the estimated cocfficients is relatively small. How-
ever, even weak coupling can greatly degrade coefficient esti-
mates, implying that the estimation of accurate coefficients
requires the judicious choice of candidate multiplets, Since the
degradation in fit to the data for coupled multiples behaves in
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accordance with expectations from synthetic experiments, the
resultant errors are probably understood, and strongly coupled
multiplets have been avoided. Although strong coupling vitiates
the spectral fitting algorithm discussed here, it sensitizes the data
to aspects of aspherical structure which genuinely isolated mulii-
plets do not experience. For example, analysis of the misfit for
the coupled pairs |S5—,54 and S¢—255 indicates that they are
coupling through odd degrees 1 and 3 of aspherical structure.
However, synthetic experiments indicate that they are coupled
less strongly than predicted by the upper mantle model M84A
together with the lower mantle model LO2.56, leading us to
hypothesize tentatively that these models are too large at degrees
1 and 3 in an integrated sense. The generalization of spectral
fitting to encompass coupled modes is straightforward [Rirzwoller,
1987] and will be the subject of a later paper. A careful analysis
of nearly equally excited overtones such as 155—55, and \S5—255
should yield new constraints on odd-degree structure. Analysis of
o5 1o through o8, which are strongly coupled to nearby toroidal
modes by the Coriolis force should help resolve some of the ambi-
guities conceming the inference of structures in the neighborhood
of the 400- and 670-km discontinuities.

Existing aspherical models have been represented as a single
perturbation in radius, either v, (M84A) or v, (LO2.56). How-
ever, the computation of interaction coefficients from these
models requires perturbations in v, v,, and p simultaneously. A
common approach to this problem has been to assume an empiri-
cal linear scaling law between relative perturbations in v, v, , and
p. Appropriate values of the scaling relationships in the deep
Earth, especially d Inv,/d Inv,, are currently being debated.
Errors in the scaling law translate into ambiguities in the ampli-
tude of the aspherical model, exacerbating quantitative com-
parison with the estimated coefficients. Nevertheless, for com-
parison with existing models we are forced to use a scaling law
approach. We consider the range of values for d Inv,/d Inv,
under debate (1.25-2.5) as end-members in a suite of physically
realistic alternatives and report comparisons frem both end-
members. In either case, there is qualitative agreement along the
oS, 15,25, and 5§ branches with the coefficients computed from
M84A-L02.56. The %° of the 28 x5=140 degree 2 coefficients
for the mantle sengitive multiplets is 469 relative 1o M84A and
L02.56 with d Inv,/d Inv, = 1.25 and 328 for d Inv,/d Iny, =
2.50. Thus, as Giardini ef al. [1987] point out, the agreement
with the larger scaling ratio is improved. However, all the
improvement comes only from a few coefficients (c{ andRe (¢7)
along the oS and ,$ branches) and can be accommodated as easily
by extra structure at the base of the mantle or a CMB perturbation.
Furthermore, the models still do not quantitatively fit the
coefficients. Unless these structures can be safely ruled out, evi-
dence for a high d Inv,/d lnv, ratio is not unequivocal. With not-
able exceptions, the interaction coefficients for ¢Sz0—aS4 com-
puted by Smith et al. [1987] from multiplet center frequency mea-
surements agree fairly well with those predicted from
M84A—L02.56 regardiess of scaling. Total misfit is not good; the
21x5=105 degree 2 coefficients for the surface wave multiplets
with d Inv,/d Inv, =1.25 have ¥*=831 and have x*=1204 for
dInv,/d Inv, =2.50. Most of this x? comes from the c3
coefficients for modes with harmonic degrees less than 27. Fun-
damental modes with harmonic degrees below 27 strongly sample
the top of the lower mantle, a region not well sampled by the
compressiona) waves used in the construction of LO2.56. Thus it
is not unlikely that a fairly large Y3 structure exists near the top
of the lower mantle which is not represented by M84A or LO2.56
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but which does appear in our inversions, The analysis of ¢S1o
through o8, will constrain this structure further.

Since existing models do not fit the estimated coefficients
quantitatively, it is interesting to inquire into the range of models
which do fit the coefficients well, For this reason we present the
result of an inversion for degree 2 mantle structure using a method
of inversion quite different from that used in previous inversions
for aspherical mantle models, We explicitly solve for smooth
models between seismic discontinuities by minimizing the sum of
the integral of the square of the radial second derivative of the
volumetric perturbation and the square of the Euclidean norm of
the boundary perturbations. We use dlnv./dInv,= 1.25
throughout the mantle, and the resulting modet fits the data at the
desired level: ¥*=111 for the 140 mantle sensitive coefficients
and y*=64 for the 105 surface wave coefficients. However,
trade-offs between volumetric perturbations and boundary pertur-
bations seriously trouble the inversion. The inferred Moho undu-
lation is guire similar to the degree 2 part of the Moho model
created by Woodhouse and Dziewonski [1984]. However, since
structure on the Moho and uppenmost mantle structure trade-off
and since the parameterization of our model is very crude in the
upper mantle, we do not interpret uppermost mantle structure.
Trade-offs between possible undulations on the 400- and 670-km
discontinuities and uppermost mantle transition zone structure are
less severe than for the Moho and uppermost mantle, since jumps
in the seismic parameters across the deeper discontinuities are
smaller than across the Moho, We assume that there are no first-
order discontinuities at 400 and 670km and solve only for
volumetric perturbations in these regions. With this assumption,
we get a fairly good qualitative agreement with MB84A in the tran-
sition zone. A strong first-order discontinuity exists at the CMB,
and we solve for it as well as lowermost mantle structure. In
agreement with LO2.56, the lower mantle is dominated at most
depths by Y and Y# with most of the structure concentrated near
the boundaries (CMB and 670 km). There is good qualitative
agreement with LO2.56 in the lowermost mantle, but in the upper
part of the lower mantle the models differ substantially where we
infer a large negative ¥ structure. We present a map of the
CMB undulation but warn the reader that the data can be fit well
without it.

The ¢ coefficients for the anomalous multiplets are extremely
pootly fit by the mantle model and core structure is necessary to
fit them. Many types of models go part of the way toward this
end with improvements vielded by the following structures: iso-
tropic perturbations in the inner or outer cores, boundary perturba-
tions on the ICB and CMB, and also apparently anisotropic per-
turbations in the inner core [Woodhouse et al., 1986]. The last
structure is the only one on this list which appears to allow the
most anomalously split, but poorly excited, mode 35 to be fit. All
the other anomalous modes can be fit with a combination of the
other structures. Except in the form of boundary layers, outer
core structure can probably be ruled out on theoretical grounds.
Giardini et al. [1987] suggest that it can be ruled out on purely
observational grounds citing the systematic misfit to 5§, and 254
which it would produce. Their argument is true if LO2.56 were
the lower mantle model and d Inv,/d Inv, =2.5 throughout the
lower mantle but, again, does not follow as long as perturbations
can be put on the CMB or if the lowermost mantle were to differ
from LO2.56. The modal data alone do not rule out core boun-
dary layers and do not unequivocally establish a large v, :v, scal-
ing ratio.

With the generalization of the technique to a form applicable to
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coupled modes, spectral fitting can be applied fruitfully to many
more modes than we have analyzed here. The success of the tech-
nique should be marked by the data being fit extremely well; total
variance reductions exceeding 80% for the genuinely isolated
multiplets are not uncommon. If the fit to each coupled set of
multiplets is as good as this, judgements of the quality of the
results will be more straightforward and the resulting models
more reliable.

APPENDIX; CONSTRUCTING SMOOTH MODELS
BETWEEN DISCONTINUITIES

Consider a piecewise continuous reference Earth model
comprising a set of D concentric shells (r; <r <r,y) overlain by
D boundaries {hy:d =1,..,0}. Assuming that the interaction
coefficients of different degrees and orders do not covary, the
problem of inferring aspherical structure breaks into independent
inversions for each degree s and order /. Therefore we can
suppress these indices and rewrite the forward problem given by
(9) as

D Td+l
=2 _[ Gy (r)8m (r)dr —hs 1 Dy (A1)
d=I1 ig
where
#Dac = ¢Board
Sm(ry = dv,(r¥v,(r)

d Inx d Iny
+ M,
d Inv, rptr) dInv,

+ R(HP) %ﬂ%} 2

Gi(r) = {Kk(f’)?f(?‘)

We call G, the combined representer for multiplet & .
The -partial derivatives of x and it with rcspect to v, can be
computed from (16) as follows:

-1
ding _ding | dlnv, =17
dlnv, dlnp | dnp :

since
dInv, 1
d Inx _ 2 v, dInv, ol =43
d Inp 1-x dInp dInv,

where x = (2v,/¥3 v, )*= 0.4 in the mantle,

-1
ding  dlou | dinv, —24
dinv, dlnp | dlnp )
since
dl
dlll# = n Vs =6.0
dlnp “dlnp

The estimation of dm(r) and {h;}2., is a function of the
choice of nomn to optimize. There are many variations on this
theme, but one fruitful approach [Gilbert et al., 1973] is to con-
struct smooth medels between discontinuities by minimizing the
sum of the integral of the square of the radial second derivative of
dm (r) and the square of the Euclidean norm of the boundary vec-
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torh=(k1,...hp)". Thatis, we minimize N where

Ta+l
N = Z wy [ (Om”(r)dr +Ashi

£

(A2)

and where 8m " is the second radial derivative of ém and A and w
are suitably chosen boundary and layer weights, respectively,
which for simplicity we now choose to be unity. For clarity, we
can consider a single shell (r4, ¥4} and overlying boundary Ag4,
and temporarily drop the summation in (A1) and (A2).

In practice, to minimize N, we first integrate (Al) by parts
twice to produce a forward problem in §m”, The minimum norm
solution can then be obtained in the standard way [Parker, 1977).
(It is easy to verify that N is minimized by expanding ém” in
G, (r) with the result then being resubstituted into (A1) to be
solved for the expansion coefficients.) The details follow.,

Integrating (A1) by parts twice yields

€ =M g ) (ra) + 6m (ry R (ra)

Ta+l

+ [ Gur)8m”(r)dr = han D

d

(A3)

where F, and R are the partial layer integrals

Fd+l

Fety= | Getryar’

Td+

Re(ry= | Fetrar’

Note that Fr{r;) and R;(r,) in. (A3) are the complete layer
integrals. Now let
dm(ry) = %:U-’k'Fk'(?’d)
Om'(ry) = ;ﬁk’Rk’(rd)
80y = ZpiGudr) AD
hay = §5f('k'Dd+1

so that {A3) becomes

=3 e X (A3)
<

where y, is the coefficient vector for multiplet &
Ve = @B ¥i, 8
and Xy, is the Gram matrix
X = (FiFir R Ryr, T, Dy D )T

where I is

Ta+t

Tw= | Gu(r)Gia(r)dr
l'd B

Equation (A5) can be "solved" for y, and hence &mi(ry),
dm’(ry), and 8m”(r) for ré(r,.ren) by (A4). The model Sm (r)
can then be reconstructed with the following equations:
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Smiry) = dm(ry)
Sm'(r)) = om'(ry)
dm(rip) = Smir) + (rp—r)om’(ry)
+ alr —r)m ()

(A6)

where {r;} ;-':1 is an ordered sequence of radii on (ry,74.) such
that #; Sryy for all j. The final equation in (A6) is simply a
recurrence relation based on a truncated Taylor series with the
first two equations being the required initial conditions. A model
constructed from (A6) must at least be smooth in the sense that all
radial derivatives higher than the second vanish. In practice, the
smoothness of the model is a function of the number of eigen-
values retained in the decomposition of X. We seek models, such
as Ms2, which are very smooth between discontinuities and keep
a small fraction of the eigenvalues.

The sum over shells can be retrieved by simply adding %, in
(A3) and following the algebra as before.
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