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ABSTRACT

We present a general, degenerate perturbation theoretic treatment of the helioseismic forward and inverse
problems for solar differential rotation. Our approach differs from previous work in two principal ways. First,
in the forward problem, we represent differential rotation as the axisymmetric component of a general toroidal
flow field using vector spherical harmonics. The choice of these basis functions for differential rotation over
previously chosen ad hoc basis functions {e.g., trigonometric functions or Legendre functions) allows the solu-
tion to the forward problem to be written in an exceedingly simple form {egs. [32}-[37]). More significantly,
their use results in inverse problems for the set of radially dependent vector spherical harmonic expansion
coefficients, which represent rotational velocity, that decouple so that each degree of differential rotation can
be estimated independently from all other degrees (eqs. [56] & [61]-[63]). Second, for use in the inverse
problem, we express the splitting caused by differential rotation as an expansion in a set of orthonormal poly-
nomials that are intimately related to the solution of the forward problem (eqgs. [5] and [54]). The orthonor-
mal polynomials are Clebsch-Gordon coefficients and the estimated expansion coefficients are called splitting
coefficients. The representation of splitting with Clebsch-Gordon coefficients rather than the commonly used
Legendre polynomials results in an inverse problem in which each degree of differential rotation is related to a
single splitting coefficient (eq. [56]). The combined use of the vector spherical harmonics as basis functions for
differential rotation and the Clebsch-Gordon coefficients to represent splitting provides a unified approach to
the forward and inverse problems of differential rotation which will greatly simplify inversion. We submit that
the mathematical and computational simplicity of both the forward and inverse problems afforded by our
approach argues persuasively that helioseismological investigations would be well served if the current ad hoc
means of representing differential rotation and splitting would be replaced with the unified methods presented
in this paper.

Subject headings: Sun: oscillations — Sun: rotation

1. INTRODUCTION

An acoustic mode of oscillation of a spherically symmetric, nonrotating, adiabatic, static solar model without magnetic fields is
typically identified by a trio of quantum numbers that represents its displacement field: n, the radial order; /, the spherical harmonic
degree; and m, the azimuthal order of the mode. Because of the rotational symmetries of this model, the modes of oscillation are
21 + 1 degenerate. That is, the frequencies of the 2! + 1 modes with different m values but with the same n and [ values are identical.
These modes are said to form a multiplet. The real Sun is not so simple. Of particular relevance for this paper is the fact that the Sun
is rotating and is deforming internally so that, for example, the surface rate of rotation at the solar equator is greater than at the
poles. This phenomenon is known as differential rotation.

A number of ways have been chosen to represent differential rotation mathematically. We will argue in this paper that a
representation with exceptionally nice consequences is the solar rotational velocity v,(r, 8, ¢), defined to be the axisymmetric
component of general toroidal flow fields in the solar interior. A heretofore more popular, and perhaps more conceptually
appealing, way of looking at this is that the Sun is rotating differentially and that the rotation rate Q(r, &) is itself a function of both
radial position and colatitude. Rotational velocity o.,(r, 0, ¢) and rotation rate Q(r, 6) are simply related by

vrot(r! 61 ¢) = ﬂ{i‘, Bs ¢) xXr= Q(T, 9)?’ sin (9)‘5 (1)

where £ = Q3, % is the unit vector which points along the axis of rotation, and r is the position vector from the center of the Sun to
position (r, 6, ¢). The coordinates r = (r, 6, ¢) are spherical polar coordinates (where 8 is colatitude) and #, §, ¢ denote unit vectors
in the coordinate directions. However represented, solar differential rotation lifts the degeneracy of the solar acoustic or p-modes,
splitting the frequencies of oscillation of the Sun. This phenomenon is, without doubt, the largest contributor to the splitting of solar
oscillations. :

Observations of split solar p-mode frequencies date from Claverie et al. (1981). The quantity and quality of new measurements
have been steadily improving (e.g., Gough 1982; Hill, Bos, & Goode 1982; Duvall & Harvey 1984; Duvall, Harvey, & Pomerantz
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1986; Brown 1985; Libbrecht 1986, 1989; Brown & Morrow 1987; Tomczyk 1988; Rhodes et al. 1990). Since p-modes are
dominantly split by differential rotation, a first-order understanding of the data requires the estimation of models of rotation that
predict the data accurately, Furthermore, an understanding of the solar angular momentum budget requires accurate models of
differential rotation (Gilman, Morrow, & DeLuca 1989). For these reasons, the inverse problem of inferring the radial and
latitudinal dependence of differential rotation from observed split frequencies has been a major focus of helioseismology. The reader
is referred to Brown et al. (1989), Christensen-Dalsgaard, Schou, & Thompson {1990), and Thompson (1990} for clear discussions of
the current state of this venture.

A necessary preface to tackling the inverse problem is the solution of the forward problem: ie., given a model of solar differential
rotation, determine the split p-mode frequencies. This problem was first solved by Cowling & Newing (1949) and subsequent
treatments can be found in Ledoux (1951), Hansen, Cox, & Van Horn (1977), Gough (1981), and Brown (1985). Naturally, the form
of the solution of the forward problem is a function of the basis functions chosen to represent differential rotation. Since differential
rotation is axisymmetric and even about the equatorial plane, it admits a very simple mathematical representation.

In helioseismology, there are two popular ways chosen to represent differential rotation, both of which are based on polynomial
expansions of rotation rate € rather than rotational velocity »,,. The more popular of these parameterizations is to expand £(r, 6)
in even powers of cos 8 (see Brown et al. 1989);

Qr,0)= Y ) cos* 8 2
k=0.2,4,...

where Q(r) describes the bulk rotation rate of the Sun and the Q(r) for k > 0 describe the radial dependence of latitudinally
dependent differential rotation. The popularity of this representation probably derives from tradition, since it was used in early
studies of differential rotation made from observations of the solar surface (e.g., Howard & Harvey 1970). Thus, the use of these basis
functions eased comparison with direct observations of differential rotation. It is generally recognized that a problem with this
parameterization is that the basis functions are not orthogonal. This is not really an obstacle from a forward theoretic perspective,
but is troublesome inverse theoretically since future inversions for higher degree components must also redo the lower degree
components since, strictly speaking, they are not independent of one another. The use of any set of orthogonal basis functions

overcomes this problem. In particular, Legendre polynomials in cosine colatitude have seen some application (e.g., Korzennik et al.
1988):

Qr, ) = :024 Qr)P,(cos 8) . 3

k

Although the parameterizations of differential rotation given by equations (2) and (3) are intuitively simple and allow straightfor-
ward comparison to other kinds of observations, their use leads to unfortunate consequences that can be entirely circumvented with
a more judicious choice of basis functions. Problems with these basis functions include the following. (1) They do not generalize
easily to general nonaxisymmetric flows. (2) They do not yield conveniently to the elegant generalized spherical harmonic formalism
of Phinney & Burridge (1973) and are, therefore, computationally cumbersome. There is a more significant problem arising from the
way observers choose to represent splitting data as a Legendre polynomial expansion in (m/l):

O = 0y + 1 i ot BAmfl) . “

The expansion coefficients ,a,; are commonly called splitting coefficients. The use of equations (2) or (3) as basis functions for
differential rotation applied to splitting data represented with equation (4) leads to a serious practical problem troubling inversion;
namely, (3) they generate a coupled set of inverse problems in which for a given k the estimation of Q,(r) or Q,(r) depends on Q,.(r) or
Q,.(r), respectively, for alleven k' > k.

Problem 3 has been tackled in a number of ways, including: (a) by estimating Q.(r) or Q,(r) for all even k < k,_,, simultaneously,
where k., = 4 usually {e.g., Thompson 1990); (b) by estimating each Q,{r) or Q,(r) recursively by solving first for each even k&’ where
koax > K > k(e.g, Brown et al. 1989); (c) by forming recombined basis functions that allow, in the high [ limit, the inverse problems
for distinct k to decouple (e.g., Korzennik et al. 1988); and (d) by replacing equation (4) with an alternative representation of splitting
measurements relative to which recombined basis functions decouple in the inverse problems for distinct k (Durney, Hill, & Goode
1988). There are problems with each of these approaches. Approaches ¢ and b generate models that at different degrees k have
correlated errors, In addition, approach b necessarily performs the recursion in the direction opposite from how a stable and robust
recursive technique should be applied. A robust recursive technique would first estimate the features of the model that have the
largest expression in the data. In this case, these are the longest wavelength features of the model (i.e., small k). Then these should be
used in the estimation of shorter wavelength model components (i.e., higher k) that affect the data more subtly. Approach b does the
opposite of this. By estimating the shorter wavelength features first, it propagates errors from the more poorly constrained to the
better constrained features of the model. Approach ¢ has a limited range of applicability and approach d requires observers to
summarize their data in a form they consider suboptimal.

The common problem with all of these approaches to problem 3 is that the basis functions that have been chosen to represent
both splitting and differential rotation have been ad hoc. In this paper we take a different approach. We define the inverse problem
explicitly in terms of the form of the solution to the forward problem. We show that there exists a natural set of basis functions with
which to represent differential rotation such that the inverse problems for different degrees of differential rotation decouple with
respect to data represented in the usual way (eq. [4]). Consequently, joint and recursive inversions as well as asymptotic approx-
imations can be entirely circumvented. These basis functions are simply the vector spherical harmonic components of v,,,. In



No. 2, 1991 HELIOSEISMIC FORWARD AND INVERSE PROBLEMS 559

addition, vector spherical harmonics generalize easily to nonaxisymmetric flow fields and yield to the formalism of Phinney &
Burridge; thus, their use also addresses problems (1) and (2). We also show that the inverse problem is simplified further if splitting
data are expressed using a set of natural basis functions intimately related to the solution of the forward problem. These orthonor-
mal functions are the Clebsch-Gordon coefficients 7 with which the 2! + 1 frequencies of a single split multiplet would be
represented as follows:

M
a)m = wnf -+ z nbli :'1‘ * (5)
i=1

The expansion coeflicients b, represent a set of new splitting coefficients.

Our approach to the forward problem is motivated by the approach geophysicists have taken to determine the splitting and
coupling of terrestrial oscillations caused by aspherical perturbations in the elastic moduli and density of the Earth {e.g, Dahlen
1968, 1969; Luh 1973, 1974; Woodhouse & Dahlen 1978; Woodhouse 1980; Woodhouse & Girnius 1982). An approximation that
has proven useful in terrestrial applications is to allow modes to couple only if they share the same radial order # and harmonic
degree I This means that if two modes are not degenerate in the absence of asphericities, they will not be considered potential
coupling partners in the presence of the asphericity. In this case, it is appropriate to use degenerate perturbation theory to compute
the split frequencies. This approximation is known to geophysicists as the isolated multiplet approximation since it is accurate if the
2! + 1 modes composing a multiplet are isolated in complex frequency from modes composing other multiplets. In terrestrial
applications this approximation has proven to be highly useful and quite accurate for calculating split frequencies but is not as
useful for computing modal displacements. To compute modal displacements accurately, quasi-degenerate perturbation theory has
been used by geophysicists in which modes are allowed to couple even if they are only nearly degenerate with respect to the spherical
Earth model. For the Sun, the number of significant accidental near degeneracies between modes from different multiplets satisfying
the selection rules that govern coupling for differential rotation is vanishingly small. Thus, solar multiplets can accurately be
considered isolated in complex frequency and degenerate perturbation theory can be used to compute the split frequencies. The
solution to the forward problem we present is accurate to first order in /w in the absence of accidental degeneracies, where €2 is the
differential rotational frequency and e is a modal frequency. Due to the spacing of p-modes between and along dispersion branches,
the contribution to splitting caused by quasi-degenerate coupling between modes from different multiplets is an effect of higher
order than first in §2/w. We will discuss this further in a future contribution.

In § 2, we defined the new basis functions for differential rotation mathematically and relate them to the previously used basis
functions given by equations (2) and (3). In § 3, we present the solution to the forward problem for differential rotation using
degenerate perturbation theory. The solution is expressed in terms of Wigner 3-j symbols which are straightforward to compute
numerically. For low-degree differential rotation, we present analytical expressions for the Wigner 3-j symbols in terms of simple
polynomials in m and 1. In § 4, we discuss the use of Clebsch-Gordon coefficients for representing splitting data, by using equation
(5} as an alternative to equation (4). These coefficients form an orthonormal basis set and are simply related to the Wigner 3+
symbols found in the solution of the forward problem. The use of the Clebsch-Gordon coefficients to represent splitting provides a
unified approach to the data analysis and inverse problems. In § 5, we derive the form of the inverse problems relating the basis
functions for #,,, both to the new splitting coefficients b; and to the traditional splitting coefficients a,. In both formulations, a single
degree of the vector spherical harmonic expansion of rotational velocity can be related to a linear combination of the splitting
coefficients. However, by using the Clebsch-Gordon coefficients, the sum is particularly simple, reducing to a single term. For
completeness, we present formulae for converting solutions back to the rotation rate basis functions for differential rotation. Finally,
to simplify the recommended use of the Clebsch-Gordon coefficients for representing splitting, algebraic expressions in m and !
for low-degree i coefficients are presented in the Appendix.

2. VECTOR SPHERICAL HARMONIC REPRESENTATION OF DIFFERENTIAL ROTATION
Tt is useful to decompose a general stationary, laminar velocity field olr, 6, ¢) into poloidal P and toroidal T components:

W 0.9)= 3 3 [PUr 6,9+ T 0, 9] ©

The poloidal and toroidal components can be fully characterized by the radius dependent vector spherical harmonic expansion
coefficients 1(7), v(r), and wi(r):

Pir, 8, ) = uln) Y0, $)F + iV, Y (0, 4), (N
Tyr, 0, ¢) = — wir}f x V,Y (0, ¢) (8)
where the surface gradient operator, ¥, is given by
N N Il
Vi=rV -/ V1 =0 55+ G526 ©

The function Y'(8, ¢)is a spherical harmonic of degree s and azimuthal order ¢ defined using the convention of Edmonds (1960) as

25+ 1(t— 8] .
e 22 ] e
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where Y = (—1){Y;]* P! are associated Legendre functions, and the asterisk represents complex conjugation. The normal-
ization constants in equation (10) have been chosen such that

ru J‘R[YZ"(G, PI*Y(O, ¢) sin 8d0dgp = 3y, Oy, (1)
o 0

where integration is over the unit sphere. The poloidal coefficients wX(r) and vi(r) are not independent if the anelastic condition
[V - {(pp) = 0] is imposed.

The differential rotation velocity field v,.(r, 6) simply corresponds to the odd-degree, zonal part of the toroidal flow field in
equation (8) which can be written:

bl == 3 wie, Y04, (12)
=1,3,5,...
where, for example:

1/2
PR _%(g) sin 0, 13

3 7 1/2
6 Y3= -7 (E) sin (5 cos’ 0 — 1), 44

o 15 11 172 . 4 2

39Y5='R — sin 621 cos* § — 14 cos* 6 + 1). (15)

The relationship between the expansion coefficients wP(r) with Q,(r) and Q,(r) can be determined by equating the representations
in eguations (1) and {12), expanding each side in terms of irreducible trigonometric functions, and equating the appropropriate
groups of terms. This procedure yields

wir) =2 \/g r[ﬁo(r) + é Q,(r) + % Q;(r)] =2 \/% rI:QD(r) - % Qz(r):l . (16)
I 28 1 1

wi(r) =2 ﬁ r[-l—s Q) + 37 (14(1')] =2 \/% r|:§ Q) 5 Q4_(r)] , {1

wlr) =2 ﬁ [% s‘z4(r)] =2 \/1171 r[% 94(:-)] , (18)

where we have truncated the sums at k = 4 in equations (2) and (3) and at s = 5 in equation (12).

3. THE FORWARD PROBLEM

The equations governing the effect of differential rotation on solar oscillation frequencies can be presented naturally in either of
two reference frames: a frame corotating with the average angular velocity of the Sun or an inertial frame roughly identifiable with
the frame of observation. Since differential rotation is stationary relative to both the corotating and inertial frames, solutions to
these equations will separate in both frames. For simplicity of use by observers, we choose the inertial frame in which to represent
and solve the following equations. As a consequence, »,,, will be considered to include the average rotational velocity of the Sun.

Let k = (n, [); then the displacement field for p-modes in the presence of an axisymmetric flow field separates spatially and
temporally:

s(r, t) = sT(rje’" {19)

We have chosen to introduce an unfortunate notational conflict and let ¢ represent time (as well as the azimuthal order of a
convective flow field). The radial eigenfunctions are defined as follows:

sp(r) = Udn Y76, ¢FF + KV, YT, ¢), : (20)

where U/r) and ,V{r) denote, respectively, the radial and horizontal eigenfunctions for harmonic degree [ and radial order n.
Hereafter, we drop the subscripts n and I in equation (20) and use instead U = U (r), and ¥ = ¥{(r). The eigenfunctions satisfy an
orthogonality condition given by

Jpo S;?'* * s}:‘dar = N‘Sm‘m 5n'n 51'! » (21)
where p, is the density of the equilibrium solar model, and

Ro
N = I polU? + BVHridr, (22)

0
where 12 = i + 1). The scalar constant N depends on the normalization of the eigenfunctions U and V.



No. 2, 1991 HELIOSEISMIC FORWARD AND INVERSE PROBLEMS 561

We seek equations governing the influence of differential rotation on p-mode frequencies, The equation of motion for the
oscillations of a spherically symmetric, nonrotating, adiabatic, static solar model without magnetic fields is given by
Z(s) — pois =0, (23)
where & is a linear, self-adjoint spatial integro-differential operator subject to certain idealized boundary conditions. This equation
can be rewritten using equation (19) as
Zis) + pois, =0. (24)
If we perturb the above described model by adding a rotational velocity field v,,, the equation of motion is altered. In particular, the

local time derivative d, must be generalized to the material time derivative D, and the displacements and frequencies of the modes
must be perturbed. Thus, we must make the substitutions

G+ D=0,+0,"V, (25)
S = 8y + 95, (26)
Wy, =Wy + S, 27

where w, is the degenerate frequency of the unperturbed multiplet. Lynden-Bell & Ostriker (1967) showed that the advection of the
velocity field v,,, by the displacement eigenfunctions s, can be ignored.

Making the above substitutions into equation (23), retaining only terms first-order in »
eliminate terms, we obtain the perturbed equation of motion

FI8) — 2 oty " V85, + powi 88, + podes, =0, (28)

dew, and ds,, and using equation (24) to

rot?

In accordance with our discussion in § 1, we will assurne the isolated multiplet approximation in the remainder of this paper and
apply degenerate perturbation theory to calculate the split frequencies due to differential rotation. Under this approximation, we
expand the perturbed displacement field s, in terms of the (2! + 1) eigenfunctions of a single multiplet of a spherically symmetric
solar model as follows

o= Y ansile). @9)

m=-1

Inserting equation (29) into equation (28), taking the inner product of the resulting expression with s**, integrating over the volume
of the Sun, and using equation (24) again, we obtain

!
fsk”"* * P )d’r — jg(S},'"*) <8, dPr+ Y am{éw" jpos;‘"'* C 5T dPr — 2iw, jposf* SRR/ 1 d3r} =0. (30)

m= -1

The first two terms in equation (30) cancel since for an adiabatic solar model % is self-adjoint. Using this fact, together with the
orthonormality of the eigenfunctions given by equation (21), we obtain from equation (30) the shift in squared frequency caused by
differential rotation:

N bl = 2iw, Ipo SPE ey VT dor (31)

where we have used the fact that the right-hand side of equation (31) vanishes unless m’ = m since »,,, is axisymmetric.
Substituting into equation (31) from equations (20} and (12) and using the fact that w? = 2w, dw, we find thatfor — Il <m < I:

m;:l = Wy + 509»1 = Wy + 2 y:; ncsl * (32)
s=1,3,5,...
where
{25 + 1\ 5
=2+ ) ——) HIH"FI, (33)
4n
Ro
st = J. wiir) K (rr? dr (34)
{0
Kit) = —por H{U? + BV?2 —[2UV + }s(s + YVA]}/N, (35
and where we have defined
l !
HYF, = (— 1)t °
s =1{(—1) (O m _m) , (36)
| _@ei-s 12
FS_[(21+s+1)1 : (37)

The gradient operator in equation (31) acts on both the scalar components and unit vectors of s which yield, respectively, what
might loosely be called the advection (U% + I?V?) and Coriolis [2UV + 4s(s + 1)V"?] contributions to the integral kernel K.
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The derivation of equation (33) is greatly simplified by use of the generalized spherical harmonic formalism of Phinney &
Burridge (1973). It is beyond the scope of this paper to describe their formalism in any detail. However, Lavely & Ritzwoller (1991)
do describe the formalism as it applies to the problem of splitting caused by a general convective flow field of which, of course,
differential rotation is simply a special case. The form of equation (33), written in terms of Wigner 3-j symbols, follows from the
Phinney & Burridge formalism. The product of the Wigner 3-j symbols is simply related to the integral of three generalized spherical
harmonics over the unit sphere (see, e.g., Edmonds 1960). It is worth noting that the appearance of the 1 and —1 in the lower row of
the 3-j symbol represented by H! is related to the gradient in equation (31). This reveals one of the beautiful aspects of the
generalized spherical harmonic formalism, that gradients translate simply to index raising in the 3-f symbols.

Another attractive feature of expressing the solution to the forward problem (eq. [33]) in terms of Wigner 3-j symbols is the
immediacy of selections rules which result, in part, from properties of the 3-j symbols. Under the isolated multiplet approximation
these selection rules are that the frequency perturbation caused by an axisymmetric fiow of degree s is nonzero only if (1) the flow is
toroidal, (2) s is odd, and (3) 0 < s < 2I. As a consequence, we have written the sum in equation (32) over only odd s. Thus, under the
isolated multiplet approximation, only zonal toroidal flows with odd degree less than or equal to twice the degree of the multiplet
contribute to the splitting. For the sake of accuracy we should point out that selection rule (1) does not derive from a property of the
3-j symbols. Rather it results from the fact that the integral kernel for a poloidal flow field under the isolated multiplet approx-
imation is identically zero. We do not show this here since we are explicitly considering only differential rotation which is purely
toroidal. However, this is demonstrated by Lavely & Ritzwoller (1991).

Equation (32) together with equations (33}+(37) completely specify the forward problem. We have chosen to write equation (32) in
a way that has proven useful in geophysical applications (e.g., Ritzwoller, Masters, & Gilbert 1986, 1988; Giardini, Li, and
Woodhouse 1988) where the coefficients ,c,, would be recognized as splitting function coefficients or as interaction coefficients. We
argue that these coeflicients, being linearly related to the model parameters w?, are what should be estimated in any analysis of the
data aiming to infer differential rotation. We discuss an alternative method of estimating the ¢, coefficients in § 4 and their relation
to the splitting coefficients, ,a;; and by, in § 5.

1t is hoped that a major product of this paper will be formulae that are simple and efficient to use both in the forward and inverse
problems of differential rotation. The coefficients y§ in equation (33) can be computed numerically and all the results in this paper
could be simply stated in terms of them. Numerical methods for computing 3-j symbols are discussed and programs are tabulated in
Zare (1988). However, for ease of use we will rewrite the 3-j symbols for s < 5 in terms of polynomials in ! and m by using the
recursion relation of Schulten & Gordon (1975). If desired, it is straightforward to extend these formulae to s > 5 by repeated
application of the recursion relation. Setting j, =s, j, =j; =L m; =0, my=m, and m; = —m in equation (5a) of Schulten &
Gordon (1975) and using equations (36) and (37), we obtain

H™,, = ﬁi {2(23 + mH™ — s[2 + 1)2 — 21H™ ) (38)

To initiate the recursion, the polynomial forms of the Wigner 3-j symbols appearing on the right-hand side of equation (38) for s = !
are required, and can be found in Table 2 of Edmonds (1960). We find by using equation (38) that for s < 5:

Hr=1, (39
H® =2m, (40)
H} =6m* — 217, 41
H? =20m® — 43* — 1im, 42)
H? = T0m* — 10(612 — Sym* + 62 — 2), (43)
H? = 252m5 — 140212 — 3)m® + [202(3L7 — 10) + 48]m . (44)
Algebraic expressions for HJ-HT, have been tabulated in the Appendix. Using equations (39)44), y7; for s < 5 can be written:
3 1/2
Vi = (E) m, @5)
- SAY2(3m? — B3 - I3)
7= \an az—3 “e)
m 3TV = 10m® + (61} — 2)m "
V=3 \4n 42 3 ’ “7
w39\ [70m* — 10(61* — S)m* + 6L — 2)(1IF — 10) a8
T =g\ dn @ — 34l — 15) ' (“48)

. 15 (11)“2 252m° — 140212 — 3)m® + [202(31% — 10) + 481m

an (417 — 3§42 — 15) (“49)

4r
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4. ORTHONORMAL BASIS FUNCTIONS FOR REPRESENTING SPLITTING DATA

Observed frequency splittings are typically represented in terms of a Legendre polynomial expansion with argument m/l, where
the expansion coefficients are the splitting coefficients ,4;; as in equation (4). {For example, Libbrecht 1989 measured the splitting
coefficients of 723 p multiplets in the range 5 <! < 60.) The sum in equation {4) has usually been truncated at M = 5 since the
inclusion of higher orders does not significantly improve the fit to the data (Brown et al. 1989). Apparently, Legendre polynomials
have been chosen to represent the splitting since they are well known basis functions and Legendre functions are orthogonal over
the continuous interval [— 1, 1]:

! 2
I_IP {X)P(x)dx = m O . (50)

Legendre functions are not orthonormal, but can easily be orthonormalized. There are two problems with their use. First, they are
not an orthogonal basis set for representing discrete data such as split frequencies. If used to represent discrete data they are only
approximately “ orthogonal.” However, the accuracy of this approximation improves with harmonic degree [ as the sampling of the
interval { — 1, 1] becomes finer. Second, and much more significantly, their use complicates the inverse problem. As we will show in
§ 5 (eqs. [611-[63]), by representing split frequencies with splitting coefficients ,a,; based on Legendre polynomials, the interaction
coefficients ,¢,; are not related to a single splitting coeffictent, but are related to a linear combination of the ,a;;.

The purpose of this section is to point out that there exists an orthonormal set of basis functions over the discrete interval
—1I < m < I, and that these functions are simply related to the yjy functions. These basis functions are Clebsch-Gordon coefficients.
Furthermore, in § 5, we show that the use of Clebsch-Gordon coefficients to represent splitting further simplifies the inverse problem
(eq. [56]).

Inspection of equation (32) suggests that a natural, alternative way to represent splitting caused by differential rotation would be
to use the functions y7 as basis functions rather than Legendre polynomials. For fixed [, the yj functions are orthogonal in s. Their
orthogonality relation can be deduced from the orthogonality property of Wigner 3-j symbols given by equation (3.7.8) of Edmonds
(1960). We rewrite this for our purposes as

(s I IAYES ! { O
=——, 51
m;,, (0 m —m)(O m — ) 25+.1 6y

Combining this with equations (33) and (36), we obtain the orthogonality relation for the y; functions:

! 5, G.G.
mom 55 s 52
m=z_1 Ysi Ve 2S+ l FSF,I ] ( )
where we have defined
G, = ya/HY . (53)

We note that G, is independent of m since the m-dependence of v is given by H}' as can be seen in equation (33).

Since the terms on the right-hand side of equation (52) can vary widely in size with s, especially for high I, the y} should not be
used as basis functions for the splitting. However, equations (51) and (52) suggest a set of basis functions which are orthonormal on
the discrete interval —I < m < I These orthonormal functions 3 are simply related to the y3 functions as follows:

25 + 1)'F,
PR P (59
where

1
Y Bubh =10y . (53)

m= -1

Equation (54) can be evaluated explicitly in terms of polynomials in m and I for s < 5 by use of equations (39)}{(44) and (37). Higher
degree B% can be computed by using the formulae provided in the Appendix. By equation (3.7.3) of Edmonds (1960), it can be seen
that the 8% coefficients are simply Clebsch-Gordon coefficients. Equation (5) would then be used to represent splitting.

5. THE INVERSE PROBLEM

Once the new splitting coefficients b, have been estimated using equation (5), the inverse problem for differential rotation can be
reconstructed immediately since the b, coefficients are simply related to the ¢ coefficients as follows:

{4m)t/?

@+ DEHIF, *” (56)

Rg
c, = J wX K (ryrtdr =
o

where we have employed the notational simplification ¢, = ¢, and b, = ,b,. Given estimates of the interaction coefficients ¢,
equation (56) defines a linear inverse problem for differential rotation.
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Although estimating the new splitting coefficients b, with the orthonormal basis functions §f; is more stable than current methods
and results in an exceedingly simple inverse problem (eq. [567), some observers may choose to retain the way splitting data have
traditionally been represented. Therefore, we also seek expressions which relate the estimated splitting coefficients ,a; to the
interaction coefficients ,c,.. We do this only for s = 1, 3, 5 here, although the method we employ can be used to produce higher
degree results, First, identify equations (32} and (4):

5
1Y, aPmih= % GHYc,, (57)
i=1 s=1,3,5

where we have set @, = ,a;; and we have defined G, in equation (53). Then, simply equating terms with the same odd power of m
yields:

a, — 2a, + Ras = 2G,c, + (4 — 122)G; c5 + [20I(312 — 10) + 48)Gs ¢5 (58)
ay — Las = 812Gy ¢, — 56P°Q21F — 3)Gscs ' (59)
as = 321G, ¢; . (60)

Substituting the polynomial representations for % (egs. [451-{49]) and HY' (egs. [39]-[44]) into G,, the following identities can be
deduced from equations (58)}-(60}:

(R b a 1 a 7 27 9
— o 4. e bt} _ - et} Lz, = (61
o) X wi(r K, (ryr* dr 2\/; [al + 21 (3 [) + T (3 + 5 ap + 413)] 5 )
Ro 7 (21 — 1)(2 + 3) as ( 21
_ 0 2 g (ELZDEAS) as (5 _ 21 (62)
Cy J, wiDK 5(r)r* dr 7 P as + 2 7 AR
[Re (21— 321 — DRI+ 3¥2 + 5)
e = | WOKertdr= 57 L5 [as] (63)

Equations (61}{63) constitute three independent inverse problems for the radial functions wi(r), wi(r), and wi(r). Equation (63)
follows immediately from equation (60). Equation (62) was obtained by substituting equation (63) into equation (59) and solving for
¢,5. Equation (61) was obtained by substituting equations (63) and (62) into equation (58) and solving for ¢,. For clarity, it should be
pointed out that the number of terms on the right-hand sides of equations (61)-(63) depends on the accuracy with which the split
frequencies are estimated. As frequency estimates become more accurate, the number of terms will increase.

This separation into three independent inverse problems, each uniquely identified with a single harmonic degree s of differential
rotation, has been made possible by use of the vector spherical harmonic basis functions given by equations (6) and (12). The
corresponding inverse problems for O, and Q, do not separate so nicely. The advantage of using the Clebsch-Gordon coefficients as
basis functions for splitting is readily apparent by comparing equation (56) with equations (61){63). The use of the Clebsch-Gordon
coefficients reduces the linear combination on the right-hand side of equations (61}63) to a single term in equation (56).

It is beyond the scope of this paper to discuss the large and well-known variety of approaches to linear inverse problems. The
reader is directed to the following papers which discuss approaches to these problems in some detail: Backus & Gilbert (1967, 1968,
1970); Parker (1977); Christensen-Dalsgaard et al. (1990). Once wi(r), w3(r), and wi(r) have been estimated from equation (56) or
from equations (61)(63) by whatever inverse method has been chosen, Q) and Q, for k = (0, 2, 4) can be computed a posteriori, if
desired, by equations (16)-{18):

1
Q) = Tin [/3wdr) + /T30 + /T1wi (64)
Q) = —— [/Tw3fr) + /TIWe] (65)

N
9
Q) = Tam [/ 11wi(] . (66)

4nmr
_ 1
04(r) = T [/30(0) — /7300 + B/ 11w8()] (67)
_ 15
Q,(r) =2 [/l — 3./11w8], (68)

~ 315
Qur) = —— %] .
4(r) 8 /anr [/ 11ws(r)] (69)
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From equations (61)-(63), it can be easily seen that in the limit of large I, the expansion coefficients wi(r), wi(r), and wi(r) depend
only on a,, a5, and a5, respectively. Thus, in the large / limit, these equations can be rewritten:

172
clasz(g) a;, (70)
4 (m\12
Cy & - 3 (5) a3, (71}
16 [ w12
CSNE(H) . )

6. SUMMARY AND CONCLUSIONS

At its inception, the motivation for this paper was that there did not appear to have emerged a fully coherent, unified treatment of
the forward and inverse problems for differential rotation. As a result a number of practical problems have beset inversions for
differential rotation. In this paper, we present a general formulation of both the forward and inverse problems for differential
rotation as well as specific formulae useful to observers with the intent of simplifying solar differential rotation inversion. There are
two main points of the paper. {1) If differential rotation is represented by rotational velocity, defined as the zonal, odd degree part of
the vector spherical harmonic decomposition of a general convective field in the solar interior, rather than the commonly used
rotation rate represented with ad hoc basis functions, then several significant problems currently facing inversions for differential
rotation disappear. In particular, the inverse problems for different degrees of rotational velocity are linear and decouple, so that
independent inversions for each degree of structure can be petformed without approximation. (2) The inverse problems are
significantly simplified further if Clebsch-Gordon coefficients are used as basis functions to represent splitting. The Clebsch-Gordon
basis functions are genuinely orthonormal on the discrete interval —! < m <! and regression matrices comprising them arce
optimally well-conditioned. As a consequence, we highly recommend that the vector spherical harmonic representation of rotation-
al velocity and the Clebsch-Gordon coefficient representation of splitting be adopted to replace the ad hoc representations
employed heretofore. We have presented formulae relating the interaction coefficients ¢, to both the new splitting coefficients b, as
well as to the traditional splitting coefficients a;.

Geophysical experience has shown that it is useful to tabulate splitting data in terms of the splitting function or interaction
coefficients c, since these coefficients are linearly related to the structures producing the splitting. However, in the Sun, there are a
number of different kinds of axisymmetric asphericities that could produce splitting. In addition to differential rotation, phenomena
which have been discussed as potentially large enough to affect p-mode frequencies measurably include lateral density variations
caused by large-scale temperature variations, asphericities in the figure of the Sun, and large-scale, dominantly quadrupolar,
magnetic fields. Each of these mechanisms affects splitting differently. However, with the possible exception of the poloidal
component of magnetic fields (D. Gough, 1990, personal communication), in each case the Wigner-Eckart theorem (Edmonds 1960)
guarantees that the solution to the forward problem can be written in a form identical to that of equation (32), but with the y];
coefficients differing in detail for each mechanism of splitting. Thus, an inspection of equation (33) reveals that the interaction
coefficients c, should not be tabulated since they differ in detail among the various sources of splitting. However, the yj; coefficients
for the various sources of splitting are similar in that each is linearly related to the same Clebsch-Gorden coefficient. Consequently,
we recommend tabulating the new splitting coefficients b, estimated relative to the Clebsch-Gordon coefficient representation of
splitting. For each of the sources of splitting mentioned here, these coefficients are linearly and simply related to the appropriate
basis functions representing that mechanism. (For differential rotation we have shown that the appropriate basis functions are given
by eq. [12].) Of course, if multiple sources are causing splitting, then models of the various mechanisms would have to be estimated
simultaneously.

Throughout the paper, we have attempted to present formulae that would prove to be easy to use. In conclusion, it is worth
presenting a brief review of the most important of these. The differential rotation basis function v, is defined in equations (8) and
(12). The general solution to the forward problem is given by equation (32) and the equations immediately following. The specific
form of the forward problem for s < 5 is presented in equations (45)+49) where polynomials in m, I, and s replace the Wigner 3-f
symbols of the general solution. [Formulae useful for calculating the solution to the forward problem analytically for higher degrees
(6 < s < 11) are provided in the Appendix.] Equation (34) is the basis for the inverse problem with respect to the ,¢,, coefficients. The
orthonormal basis functions (Clebsch-Gordon coefficients) to represent splitting are defined in equation (54), are tabulated in the
Appendix, and the inverse problem with these coefficients is given by equation (56). Relative to the ,a, coefficients, the inverse
problems are given by equations (61)63). Once v,,, has been estimated, the rotation rate can be computed, if desired, with equations

(64)(69).
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APPENDIX
We have argued in this paper for the following representation of splitting data:
Wy = o + f bl (A1)
where b, are the new splitting coefficients and 7 are Clebsch-Gordon coefficients defined as
w=(Qs+ 1)2FH], (A2)
20 — 51 M2

Expressions for H” for 1 < s < 5 are given by equations (40)+(44) in the body of the text and for 6 < s < 11 below by equations
(A4)-(A9). We note that with the H” coefficients provided below, it is straightforward to calculate the y7 coefficients for @ > 5 by use

of equation (33).
The H™ coefficients for 6 < s < 11 are given by
H? = 924m® — 420m*(312 — 7) + 84m*(SI* — 2512 + 14) — 201X} — 817 + 12), (Ad)
m— 3432m” — 1848m°(312 — 10) + 168m>(151* — 1051* + 101) — 8m(35L° — 385 + 8821 — 180), (A5}
™ = 12870m% — 12012m5Q212 — 9) + 2310m™(6L* — 5617 + 81)
—12m*(2101® — 30451% + 989817 — 4566) + TOIX(L° — 20I* + 108" — 144), {A6)
™ = 48620m® — 17160m™ (612 — 35) + 12012m3(6L* — 727 + 145) — 440m*
x (4218 — 7771 + 340217 — 2630) + 12m(1051% — 2660I° + 188441 — 36528 + 6720), (A7)

m = 184756m'0 — 145860m>(31% — 22) + 12012m5(30LF — 450 + 1199) — 2860m*
X (4215 — 9661* + 548117 — 6248) + 132m2(1051% — 3290L° + 29680F* — 789001 + 32208)

—2521%(I% — 40I% + 508LF — 230417 + 2880) , (A8}
m = 705432m!! — 1847560m°(? — 9) + 58344m’(30L7 — 550L* + 1869) — 120120m°

x (615 — 1681* + 119912 — 1873) + 1144m>*(1051% — 3990L° + 44730L" — 1562007 + 105228)

—24m(2311}° — 111652 + 1743281° — 1006764L" + 177144017 — 302400) . (A9)
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