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In this paper we derive a theory, based on quasi-degenerate perturbation theory,
that governs the effect of global-scale, steady-state convection and associated static
asphericities in the elastic-gravitational variables (adiabatic bulk modulus «, density
p, and gravitational potential ¢) on helioseismic eigenfrequencies and eigenfunctions
and present a formalism with which this theory can be applied computationally. The
theory rests on three formal assumptions: (1) that convection is temporally steady
in a frame corotating with the Sun, (2) that accurate eigenfrequencies and
eigenfunctions can be determined by retaining terms in the seismically perturbed
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equations of motion only to first order in p-mode displacement, and (3} that we are
justified in retaining terms only to first order in convective velocity (this is
tantamount to assuming that the convective flow is anelastic). The most physically
unrealistic assumption is (1), and we view the results of this paper as the first step
toward a more general theory governing the seismic effects of time-varying fields.
Although the theory does not govern the seismic effects of non-stationary flows, it
can be used to approximate the effects of unsteady flows on the acoustic wavefield
if the flow is varying smoothly in time. The theory docs not attempt to model seismic
modal amplitudes since these are governed, in part, by the exchange of energy
between conveetion and acoustic motions which is not a part of this theory.
However, we show how theoretical wavefields can be computed given a description
of the stress field produced by a source process such as turbulent convection.

The basic reference model that will be perturbed by rotation, convection,
structural asphericities, and acoustic oscillations is a spherically symmetric, non-
rotating, non-magnetic, isotropic, static solar model that, when subject to acoustic
oscillations, oscillates adiabatically. We call this the sNrRNMaIS model. An acoustic
mode of the skrNMAIS model is denoted by k& = (n,!, m), where % is the radial order,
! is the harmonic degree, and m is the azimuthal order of the mode.

The main result of the paper is the general matrix element H7%™,, for steady-state
convection satisfying the anelastic condition with static structural asphericities. It
is written in terms of the radial, scalar eigenfunctions of the SNRNMAIS model,
resulting in equations {90)-(110). We prove Rayleigh’s principle in our derivation of
quasi-degenerate perturbation theory which, as a by-product, yields the general
matrix element. Within this perturbative method, modes need not be exactly
degenerate in the SNRNMAIS solar model to couple, only nearly so. General matrix
elements compose the hermitian supermatrix Z. The eigenvalues of the supermatrix
are the eigenfrequency perturbations of the convecting, aspherical model and the
eigenvector components of Z are the expansion coefficients in the linear combination
forming the eigenfunctions in which the eigenfunctions of the sNrRNMAIs solar model
act ag basis functions.

The properties of the Wigner 3j symbols and the reduced matrix elements
composing H",.; produce sclection rules governing the coupling of SNRNMATS modes
that hold even for time-varying flows. We state selection rules for both quasi-
degenerate and degenerate perturbation theories. For example, within degenerate
perturbation theory, only odd-degree s toroidal flows and even degree structural
asphericities, both with ¢ < 21, will couple and/or split acoustic modes with harmonic
degree 1. In addition, the frequency perturbations caused by a toroidal flow display
odd symmetry with respect to the degenerate frequency when ordered from the
minimum to the maximum frequency perturbation.

We consider the special case of differential rotation, the odd-degree, axisymmetric,
toroidal component of general convection, and present the general matrix element
and selection rules under quasi-degenerate perturbation theory. We argue that due
to the spacing of modes that satisfy the selection rules, quasi-degenerate coupling
can, for all practical purposes, be neglected in modelling the effect of low-degree
differential rotation on helioseismic data. In effect, modes that can couple through
low-degree differential rotation are too far separated in frequency to couple strongly.
This is not the case for non-axisymmetric flows and asphericities where near
degeneracies will regularly occur, and couplings can be relatively strong especially
among SNRNMAIS modes within the same multiplet.
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All derivations are performed and all solutions are presented in a frame corotating
with the mean solar angular rotation rate. Equation (18) shows how to transform the
eigenfrequencies and eigenfunctions in the corotating frame into an inertial frame.
The transformation hag the effect that each eigenfunction in the inertial frame is
itself time varying. That is, a mode of oscillation, which is defined to have a single
frequency in the corotating frame, becomes multiply periodic in the inertial frame.

1. Introduction

Heliogeismic images of the acoustic velocity field of the Sun are providing new and
unique information about solar structure and dynamies. To continue to utilize
effectively the information provided by the continually improving data-sets will
require a thorough understanding of the way in which solar structures and processes
affect helioseismic data. It is upon such an understanding of these forward problems
that any future inversions will rest.

We consider here the helioseismic effect of one such solar process: convection, The
purpose of this paper is to present a theory that governs the effect of large-secale,
steady-state convection, with associated asphericities in the structural elastic-
gravitational variables (adiabatic bulk modulus «, density p, and gravitational
potential ¢), on heliogeismic oscillations. Many studies have modelled the seismic
effect of differential rotation, the long-wavelength axisymmetric component of
convection (Duvall & Harvey 1984 ; Brown 1985; Duvall ef al. 1986 ; Libbrecht 1986,
1939; Brown & Morrow 1987 ; Brown ef af. 1989 ; Rhodes ef af. 1990 ; Thompson 1990 ;
Ritzwoller & Lavely 1991). However, to data, studies of the seismic effect of non-
axisymmetric convection are rather sparse. In an asymptotic treatment, Gough &
Toomre (1983) calculated the frequency shift of an acoustic mode due to advection
by a purely horizontal flow. Brown (1984) calculated the influence of turbulent
convection on modal degenerate frequencies. The scattering of sound by an isolated,
steady laminar compact vortex was considered by Bogdan (1989). Hill et af. (1983)
and Hill (1988, 1989) have applied ray-theoretic methods to infer horizontal
convective velocities near the solar surface by using frequency shifts of dispersion
curves. All of these studies make restrictive assumptions about the geometry of the
How field including either that the flows are horizontal in a plane-parallel medium or
demonstrate cylindrical symmetry, and none attempts to model wave-front
distortion and deflection caused by convection. In summary, to the best of our
knowledge no general theory for the effect of convection on global helioseismic
oscillations currently exists.

The theory presented in this paper differs from previous studies in the following
ways. (1} Our theory is non-agymptotic. In principle, the results are accurate for all
wavelengths and frequencies of helioseismic oscillation to the extent that the
assumptions of the theory are vaklid. (2) It is derived within a spherical geometry.
Previous investigations that modelled convective effects within a non-spherical
geometry are appropriate for short-wavelength convection but inappropriate for
global-scale convection which is the subject of this paper. (3) The theory presented
here makes no assumptions about the geometry of the flow. We represent general
non-axisymmetric flow fields comprising both poloidal and toroidal components in
terms of vector spherical harmonics, which are complete basis functions for a vector
field in a sphere. (4) Our approach is modal-theoretic rather than ray-theoretic. From
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a travelling wave perspective this means that both wave-front deformation as well
as the perturbation in local sound speed by convection are modelled. In modal-
theoretic language, convection results in modal coupling as well as splitting.

In Lavely & Ritzwoller (1992) we implement the theory presented in this paper
using a numerical simulation of large-scale convection and discuss the observational
consequences of the theory. In particular, we show that the helioseismic frequencies,
displacement patterns, and line-widths of an aspherical solar model are appreciably
altered relative to the corresponding quantities caleulated from a model with
differential rotation alone.

{a) Modal notation and terminology

The basic reference model to which all subsequent structural perturbations and
processes will be added is a solar model that is spherically symmetric, non-rotating,
non-magnetie, isotropic, and static, subject to adiabatic acoustic oscillations. We
refer to thiz as the sSNRNMATS solar model. An acoustic mode of oscillation of any
golar model iz defined to be a characteristic spatial displacement pattern that
oscillates with a single frequency.

An acoustic mode of a SNRNMAIS model is uniquely identified by a single triple of
quantum numbers (n,!,m) that denote, respectively, the radial order, harmonic
degree, and azimuthal order of the mode. A modal frequency for such a model is
simply the degenerate frequency of the multiplet .S, that comprises the (27+1)
modes with identical # and { values. Any symmetry-breaking agent such as rotation,
magnetic fields, or convection will lift this (21+1) degeneracy and split the
frequencies of the modes composing the multiplet. We call any model with such a
symmetry-breaking perturbation a non-sNrNma1s model. A major goal of this paper
iz to provide formulae with which to calculate the modal eigenfunetions and
eigenfrequencies of both syrxmars and non-sxRnmals solar models. The per-
turbations of the non-sNrRNMa1s solar model will be assumed to have small magnitude
and be stationary in a frame corotating with the Sun. If the symmetry-breaking
agent is axisymmetric, as is differential rotation, then to a good approximation the
spatial structure of each mode will remain specified by the same triplet of quantum
numbers. For a general, non-axisymmetric perturbation such as a convective flow
field, the eigenfunction (or spatial displacement pattern) of each mode is a linear
combination of the eigenfunctions of the swrNmMaIs solar model. We call this
phenomenon oscillation—oscillation coupling or interaction to distinguish it from
oscillation—convection coupling, the exchange of energy between acoustic modes and
convective motions. The acoustic modes that are said to couple as a result of a
convective flow or a structural asphericity are sNENMATs modes. The modes of the
non-sNENMAIS solar model do not couple.

Two distincet modes of the SNRNMATS solar model are orthogonal (in the sense of (4))
and are said to be isolated from one another. These modes may couple when the
reference model is perturbed either by a structural perturbation or a convective flow.
A multiplet composed of modes whose combined eigenspace is orthogonal to the
combined eigenspace of the modes composing all other multiplets is said to be
isolated or self-coupled. The degree of coupling between sNrRNMAIS modes is a
function of several factors, among which are the strength of the asphericity or
convective flow producing the coupling, the proximity of the eigenfrequencies of the
modes, the relation between the geometries of the perturbation and the oscillations
which is encoded in a set of analytical angular selection rules, and the similarity of
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the radial eigenfunctions of the two modes. When two sNrRNMALs modes k = {n, 1, m)
and £’ = (n',I',m’) couple, the strength of interaction is described by the general
matrix element M., The matrix H,., ., composed of all the general matrix
elements for the multiplets .8, and .8, is of dimension (2" + 1) % (214 1) and is called
the general matrix. The square general matrix H,, ,, is called the splitting matrix
and governs self-coupling. The eigenfrequencies of non-isolated modes that couple
within or across # or [ are the eigenvalues of an assemblage of block diagonal splitting
matrices and off-block diagonal general matrices. The entire assemblage is called the
supermatrix Z.

Since the acoustic modes of the sxrymats solar model are spheroidal, their
eigenfunctions s, () may be written in the form

§p(r} = ,Ui(n) Y0, ) P+, Vi(n} V, Y78, ), (1)

where (U/(r} and , V,{r} are the scalar radial eigenfunctions for harmonic degree [ and
radial order n. The coordinates (r,f, ) are spherical polar coordinates (where ¢
is colatitude) and #, #, and ¢ denote unit vectors in the coordinate directions.
The gravitational potential scalar eigenfunetion, d, ¢,(r). and its radial derivative
8.0, (r), LU r). and [V (r) form the set of scalar radial eigenfunctions. The surface
gradient operator is given by

- (2)

The function Y*(#,¢) is a spherical harmonic of degree I and azimuthal order m
defined using the convention of Edmonds (1960):

f - f (V7(6, $)15Y70. ) sin 0 A0 = 8, 3y, 3)

where integration iz over the unit sphere and * denotes the complex conjugate.
Heneceforth, we drop the subscripts » and [ in equation (1) and use instead I7 = [ U,(r),
U =,Ur) and so on. The sNrRNMAIS spatial vector eigenfunctions satisly an
orthogonality condition given by

J.Pu s 5, dr = Ny Oy, (4)

i
where N, = J ® oo fUU" +U{l+ 1) VV']r dr, (5)
0
and d*r = r?sin# d0 d¢ dr. Henceforth, an integral sign without limits, as in equation
(4}, will denote a three-dimensional integration over the volume of the solar model.
Perturbation theoretic techniques are usually used to calculate split acoustic mode
eigenfrequencies and eigenfunctions of a perturbed model. We show how quasi-
degenerate perturbation theory can be applied to determine these guantities for a
non-SNENMAIS solar model. We use the eigenfunctions of the sNRNMAIS model as basis
functions to represent the mode §;(r,{) where j iz a mode index:

(1) = [ Y sk(r)] eluit, (6)

ke K
Phil. Trans. R, Soc. Lond. A (1992)
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We show how to determine the appropriate eigenspace K required to represent the
mode, derive the expansion coefficient o, for each component of the eigenspace, and
derive expressions for the split eigenfrequency of the mode w; = w,¢; + 6w; where w o
denotes a reference frequency. Note that the expansion in equation (6) excludes
toroidal modes and therefore does not represent a complete set. In the case of the Sun
the toroidal modes are all of zero or near zero frequency. The central tenant of quasi-
degenerate perturbation theory is that only modes that are very similar in frequency
will significantly interact. Since the p-modes we are considering typically have
frequencies of 1.5 mHz or greater, we conclude that toroidal modes are of no
significance and that inclusion of spheroidal terms alone in equation {6) is adequate.

The major theoretical result of the paper is analytical expressions for the general
matrix elements that compose the supermatrix (or splitting matrix in the case of self-
coupling). The perturbed modal frequency dw, is simply an eigenvalue of the
supermatrix (or aplitting matrix), and the expansion coefficients are simply the
eigenvector components af,. We do not attempt to present a theory that accurately
predicts modal amplitudes, but only modal eigenfrequencies and eigenfunctions; the
formal assumptions of the theory discussed in §15 will reflect this point.

(b) Assumptions and their implications

Although the theory presented in this paper is more general than previous work,
its application is restricted both by practical considerations and by the set of
assumptions upon which it is formally based. The major practical limitation is that
the convective structures considered should be global in extent. For example,
although it is possible to represent a single small-scale convective vortex in terms of
vector spherical harmonies, there are better representations and doing so would
probably be a misuse of this theory. Thus, though the theory holds for all but very
short wavelength, turbulent convection, it will be most usefully applied to long
wavelength flows. There is a caveat: spatially repetitive small-scale structures, such
as the solar granulation, can be well represented by vector spherical harmonics and
are not beyond the practical limitations of this theory. The theory applies to both p-
modes and g-modes but since the latter have not been observed unambiguously, our
discussion will centre on p-modes.

Much more restrictive are the following set of formal assumptions. (1) The
convection is steady in time. As we will discuss in §2, this assumption is necessary for
the equations of motion to separate. The asphericities in the structural elastic-
gravitational variables will also be assumed to be time invariant. (2) We retain terms
in the seismically perturbed equations of motion only to first order in p-mode
displacement. Thus we derive and use linearized equations of motion. (3) We also
retain terms in the seismically perturbed equations of motion only to first order in
convective velocity. This is done so that acoustic oscillations and convection do not
exchange energy and to thiz extent can be considered independently. This is
tantamount to the requirement that the convective flow field is anelagtic. We discuss
briefly the implications of each of these assumptions in turn. Arguments are
presented to justify assumptions (2) and (3) in §1e.

Formal assumption (1). The convection is steady. If convection is steady in time,
each identically directed acoustic wave that propagates through a given region will
experience the same convective effect. Multiply orbiting waves propagating along
near great circles will experience a constructively accumulating effect in that region.
In this case, the split modal frequency associated with the propagating wave will be
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time invariant. If the convective state changes appreciably during the time it takes
an acoustic wave to execute a single orbit, then the convective effect will vary
between orbits. In fact, the effect may destructively accumulate. Consequently,
modal frequencies would be time varying, leading to an effective line-broadening of
modal resonanee functions. This line-broadening is not a part of the theory presented
in this paper and the seismic effect of agpects of convection that are rapidly evolving
in time cannot be determined from the results presented here. Of particular
significance is the fact that the effect of the shearing of sectoral or banana cell modes
of convection by differential rotation cannot be modelled within this theory. Rather,
the results in this paper represent the first steps toward constructing a more general
theory that governs time-varying fields.

Although the results in this paper are correctly applied only to steady-state
convection, they may be most useful if seen to provide instantaneous frequencies and
displacement patterns for a time-varying convective field. These instantaneous
frequencies would be accurate over the lifetime of the conveection cell which, for long-
lived modes of convection, may be appreciable. In this case, the steady-state
assumption would amount to a short-time approximation. For example, since the
shearing of convective patterns takes time to develop, the results presented here are
applicable until the shearing effects accumulate. The numerical simulations of
Glatzmaier & Gilman (1981, 1982) show that some components of flow have lifetimes
on the order of weeks. Furthermore, there are certain observable solar features, in
particular active longitudes and coronal holes, that appear to evolve relatively
unsheared by differential rotation. If these features are somehow anchored at depth
in convective structures, then their existence is further evidence for a relatively
stable component of flow deep in the convection zone.

From the view of the steady-state assumption as a short-time approximation, it is
straightforward to implement a numerical formalism to approximate the time-
varying acoustic wavefield if we assume that the variations in convection are
temporally smooth. We would calculate a time sequence of instantaneously valid
eigenfrequencies and eigenvectors on a coarse set of time knots where at each knot
the flow field is assumed to be stationary. We would then interpolate the
eigenfrequencies and eigenvectors onto a finer time grid and allow the wavefield to
evolve continuously through each of the intervals between the knots.

Formal assumption (2). The equations of motion are linearized. Neglecting higher-
order terms than first in the seismically perturbed quantities amounts to neglecting
seismic self-advective effects. In particular, the self-advection of the displacement
field is neglected which is tantamount to assuming that the total acoustic
displacement in a region is much smaller than the displacements produced by
convection during the passage of a wave. As we discuss in §§1¢ and ¢, the accuracy
of this assumption improves with depth. The application of the theory will be most
accurate for acoustic paths below the strongly super-adiabatic layer near the solar
surface where turbulence is most vigorous.

Formal assumption (3). Reynolds stresses terms and terms second order in the
convective velocity such as the self-advective term are discarded. Discarding the
latter amounts to assuming that convective velocities are relatively small. Ignoring
Reynolds stresses, which are proportional to the laplacian of the convective velocity,
s equivalent to neglecting turbulent viscosity and requires that convective
wavelengths be relatively large. This implies that convection—oscillation coupling is
neglected so that there is no mechanism by which convection and the acoustic
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oscillations can exchange energy. In particular, we assume that convective flows do
not generate acoustic waves and, therefore, we require that the flows satisfy the
unperturbed continuity equation commonly called the anelastic condition. This
condition eliminates potential sources, sinks, and cavitation in the flow field. Thus we
view convection as a sort of passive background on which acoustic oscillations are
superposed. It deforms acoustic wave-fronts and perturbs local sound speeds, but
does not exchange energy with acoustic waves. The validity of these assumptions is
poor near the surface but, as with formal assumption (2), improves with depth below
the photosphere.

In summary, the implications of these assumptions are that the convective fields
to which the theory is applicable should be of relatively long wavelength, steady in
time or at least relatively long-lived, and well below the photosphere., Giant-cell
convection satisfies these criteria and provides the best target for the application of
the theory presented herein. In the remainder of this section we discuss solar
convection, review the evidence for the existence of giant-cell convection, and
attempt to justify the use of linearized equations of motion to determine the seismic
effect of giant-cells.

(e) Solar convection and its seismic effects

Observation of the distinct cellular motions of granules and supergranules suggests
that there are preferred scales of motion for thermal convection. The common picture
of convection is that the Sun contains a multiplicity of scales of motion ranging from
the Kolmogorov microscales at the short end to differential rotation which is global
in extent. At intermediate length scales, convective motions are thought to be
organized into granules, supergranules, and giant-cells. Temporal scales also range
from a few minutes for granule overturn times to weeks for the largest scale of giant-
cells deep in the convection zone. Goldreich & Kumar (1988) present a recent review
of turbulence. Bray et al. (1984) and Gilman (1987) provide overviews of the physics
and morphology of granules, supergranules, and giant-cells. For a recent review of
solar convection, see Spruit ef al. (1990).

To discuss gualitatively the likely general characteristics of convection below the
photosphere, we look to mixing-length theory for guidance. In the mixing-length
picture of convection one would take the mixing length, the Mach number, and the
velocity and timescales of convection to be given, respectively, by

H~aH, (7}

M ~ [gF, HQp/4sc, TF, (8)
Vg~ M, (9}

Ty ~ Hivg, (10}

where H,, = P/(pg) is the pressure scale height, « is the ratio of the mixing length to
H,, P is pressure, T'is temperature, g is the gravity, ¢, is the specific heat at constant
pressure, and ¢ is the sound speed. We have set @ = (4 —32) £~ where # is the ratio
of the gas pressure to the total pressure. The convective flux can be calculated by
using
Ly [V.—V
o | an
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Figure 1. Characteristic length, velocity, and time scales of convective eddies as predicted by

" mixing length theory (equations (7), (9} and {10)) plotted as a function of depth. The solar model of
Podsiadlowski (1989) was used to calculate these quantities. . length secale (em); -—-—-—- .
timescale (8); ————— . velocity scale {em s71).

where L is the solar luminosity, V is the temperature gradient (using standard
notation), and V, is the radiative temperature gradient. We have used equation
(14.58) of Cox & Giuli {1968) to obtain equation (8). Figure 1 is a plot of the
characteristic length, velocity, and timescales of convection predicted by equations
(7}, (9, and (10) by using the solar model of Podsiadlowski (1989) with  taken to be
1.305. The predicted time and velocity scales near the surface correspond well with
observations of solar granulation.

Convection at all depths in the convection zone will affect helioseismic oscillations.
The p-mode horizontal wavelengths range in size from the smallest to the largest
scales of the convective motions and the dominant modal frequencies coincide with
the characteristic overturn times for convective motions near the surface. Since the
energy and the characteristic length and timescales of convection vary with depth,
the physics of interaction between acoustic modes and convection will necessarily
also vary. For example, granule and sub-granule scale motions are thought to be the
source of the acoustic oscillations (Goldreich & Kumar 1988). To model the total
effect of convection at this scale on the acoustic oscillations would be very difficult
as it would involve modelling convection—oscillation coupling in addition to
oscillation-oscillation coupling. As the formal assumptions indicate, we have set for
ourselves a simpler task: to model the effect of deeper, long-wavelength conveetion
such as giant-cells that, we argue in §1e, exchange very little energy with acoustic
oscillations.

Though, as figure 1 shows, it is likely that the characteristic temporal and spatial
scales of convection vary continuously across the convection zone, convective
processes can be segregated into two concentric shells (an outer shell and an inner
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shell), with convection in each shell being dominated by distinct processes. In §1e we
attempt to quantify the extent of the outer shell; here we discuss the characteristics
of the convection and its seismic effects in each shell.

The outer shell occupies the top few pressure scale heights where the acoustic and
convective physics are most complex. Convection in this shell is highly turbulent and
displays relatively short characteristic lifetimes and length scales. The convective
velocity in the outer shell is an appreciable fraction of the local sound speed
(M = 0.3}, the timescales of the turbulence and of the acoustic radiation are com-
mensurable, and the amplitudes of the p-modes and the convective flows are largest.
Goldreich & Keely (1977a, b} and Goldreich & Kumar (1988, 1990) calculated p-
mode energies under the assumption they are excited by turbulent convection. Their
work shows that acoustic wave emission and absorption in the Sun principally take
place through interaction with turbulence in the top few scale heights of the
convection zone. We define the radial extent of the outer shell as the region of
significant interaction between the p-modes and convection. We argue in §1e that
this region is also where three-mode coupling is most appreciable.

In the outer shell, convective cells evolve rapidly (Stein & Nordlund 1989; Title
et al. 1989). 1f, in addition, cells are distributed isotropically in space, then they will
produce little accumulated splitting effect on globally propagating waves. There will
be local acoustic effects, but the isotropic assumption guarantees that the net global
effect on frequency will be small. However, acoustic modal amplitudes, damping
rates, and degenerate frequencies will be affected by outer shell processes (Brown
1984 ; Christensen-Dalsgaard & Fransden 1983; Christensen-Dalsgaard et al. 1989;
Kumar & Goldreich 1989) such as convection—oscillation coupling, three-mode
coupling, and radiative damping.

The inner shell is much larger than the outer shell and lies directly beneath it,
occupying, as we argue below, more than ca. 99.8 % in radius of the convection zone.
By definition, the emission and absorption of acoustic waves by turbulence in this
shell is negligible, and convection—oscillation coupling can be ignored accurately.
Consequently, the anclastic condition can be applied. Furthermore, p-mode
amplitudes are much smaller than in the outer shell and the solar gas in this shell is
optically thick so radiative damping is negligible. The contribution to the interaction
coefticient describing three-mode coupling in the inner shell is relatively small
{(Kumar & Goldreich 1989). Therefore, we argue that splitting and the global
distortion of acoustic wave-fronts dominantly result from convection that is
relatively coherent temporally and spatially. If long-lived, long-wavelength features
of convection do exist, they would possess characteristic signatures in p-mode
frequencies and line-widths that could be computed from the theory presented
herein. In principle, once we have identified these signatures, their observation would
place constraints on the causative convective structures. For example, we show in
Lavely & Ritzwoller (1992) that because of the way helioseismic Doppler images are
reduced and analysed, the effect of aspherical structure is to broaden line-widths and
that within a given multiplet the line-broadening is most pronounced for low {m)
states. This effect can be significant for modes with low intrinsic damping rates. The
value of heliogeismological constraints such as these would be enhanced by the fact
that large-scale convection has been linked with the dynamic structure of the
differential rotation (Gilman 1987) and with the solar dynamo (Stix 1981). In
addition, magnetic activity observed at the solar surface probably is controlled by
flows at depth.
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Figure 2. A plot of ¥, = M%Fc which is the flux of energy pumped into the acoustic modes from the
convective motions (see (12)). We have normalized F, by its peak value. We use the radial
dependence of F to argue that coupling between convection and p-modes is significant only in the
top ca. .2% of the convection zone.

Next, we address two questions in §§1d and e: (1) What is the evidence that large-
scale convection exists in the inner shell? (2) What is the extent of the outer shell
where we do not accurately model the convective effect of convection ?

(d) On the existence of giant-cells

A problem for the utility of the theory presented here is that giant-cells have not
been unambiguously observed ; if they do exist, their surface amplitudes are less than
10 m s7* (Howard & LaBonte 1980; LaBonte et al. 1981; Brown & Gilman 1984).
Nevertheless, the evidence for their existence is strong, though circumstantial. (1)
The Sun displays a number of features that are suggestive of sustained large-scale
motions (Gilman 1987). These include persistent large-scale patterns in the solar
magnetic field, the coronal holes which survive several solar rotation periods without
being sheared apart by differential rotation, and the existence of active longitudes
where new active regions preferentially arise. (2) The observed distinct cellular
convection may continue well below the surface. Under mixing length theory (figure
1), the scale of convective eddies is set by H, so that one predicts a hierarchy of
convective cells with monotonically increasing vertical secale. In addition, both linear
and nonlinear models (Gough et al. 1976) have shown that even when the fluid is
compressible, and the stratification includes several scale heights, convection
spanning the entire unstable layer is favoured. Thus, for the Sun, patterns of motion
with horizontal dimensions up to the depth of the convection zone (le. A=
200000 km or harmonic degrees of ! & 20} would be expected. (3) The space-lab
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experiment of thermal convection (Hart ef al. 1986) and the numerical simulations
of Glatzmaier (1984) and Gilman & Miller (1986) suggest that large and sustained
patterns of motion may exist in the Sun with scales approaching the depth of the
convection zone. (4) Hill (1988) constructed three-dimensional spectra (k,, k,, w) of
helioseismic images of small rectangular regions near the solar equator and discovered
relatively large-scale horizontal, poleward flows of approximately 100 m s™ that
may be the surface expression of giant-cells. (5} Finally, a possible explanation of the
smaller vertical velocities of the supergranules and the absence of a strong signature
of giant-cells in the data of Howard & LaBonte (1980} may be found in the work of
Latour et af. (1981) and van Ballegooijen (1986). Latour et «l. (1981) found that
buoyancy breaking in A-type stars may occur in upward-directed flows that have
horizontal scales large compared with the pressure scale height of the region into
which they penetrate. This leads to lateral deflection and strong horizontal shearing
motions. If this result applies as well to G-type stars such as the Sun, it may provide
the explanation for the lack of surface observations of giant-cells. In addition, van
Ballegooijen (1986) found that density stratification screens out periodic components
of the near surface flow pattern in his convection model so that periodie motions that
exist at depth would not be observed at the surface.

(e) Justification of linearization for application to giant-cell convection

We now attempt to quantify the extent of the outer shell, defined to be that region
where convection—oscillation coupling is appreciable. The extent of energy exchange
between oscillations and turbulent convection depends on their relative time and
velocity scales. Perhaps the best available measure of the coupling between
convection and acoustic oscillations is the flux of energy ¥, pumped into the acoustic
modes from the convective motions. Goldreich & Kumax (1990) derive an expression
for F, given by

F, =MY*F,, (12)

where M and F, are defined, respectively, in equations {8) and (11).

An inspection of figure 2, which plots the radial dependence of Fj, reveals that
convection—oscillation coupling is relatively insignificant below the top ca. 0.15% of
the convection zone. Thus, as a mechanism of oscillation—convection coupling,
Reynolds stresses and entropy fluctuations act far more efficiently in the top few
scale heights than in the deeper layers where the characteristic velocities are smaller
and the length scales are larger.

Kumar & Goldreich (1989) also discuss the effect of nonlinear interactions among
solar acoustic modes. They argue that these interactions are strongest in the
outermost layers of the Sun. Indeed, an inspection of their figure 3 indicates that the
coupling coefficients are sensitive to three-mode interactions only in the outer ca.
0.2% by radius of the convection zone. Consequently, we infer that three-mode
interactions can be ignored in the determination of seismic effects of convective flows
below this depth.

In criticism of the linearization in bhoth convective velocity and acoustic
displacement, it might be suggested on intuitive grounds that a theory governing the
effect of convection on acoustic waves must be accurate along the entire path of
the acoustic wave, and since all acoustic waves propagate through the outer shell the
theory must be general enough to govern outer shell physics. This would certainly be
true if we were interested in describing all of the seismic effects of convection.
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However, as discussed in §1¢, turbulent convection and other nonlinear processes in
the outer shell will dominantly affect modal amplitudes and degenerate frequencies.
We are only interested here in determining the eigenfunctions and split frequencies
of acoustic modes. Consequently, outer shell physics will be subsequently ignored.

In conclusion, we define the outer shell to have a depth of ca. 0.2% of the
convection zone and we argue that the seismie effect of convection can be modelled
accurately with a linearized theory for flows within the inner ca. 99.8% of the
convection zone by radius.

{(f) Overview

In §2 we discuss reference frames and the separability of the equations of motion,
and present a means of transferring the theoretical results presented in this paper
from a frame corotating with the Sun to an inertial frame that can be roughly
identified as the obscrver’s frame. In §3 we present mathematical representations for
convection and for the asphericities in the elastic-gravitational variables. The
equations of motion governing the acoustic oscillations in the presence of a steady-
state global-scale velocity field and the associated static structural perturbations to
density and bulk modulus are derived in §4. We derive in §5 the quasi-degenerate
perturbation theory needed to calculate the influence of a velocity field and
structural perturbations on solar oscillations. In §6, we derive the gencral matrix
elements that determine the displaccment field and split frequencies caused by an
anelastic model of convection represented with scalar and vector spherical harmonics,
In §7 we discuss properties of the supermatrix. In §8, we consider differential
rotation. In §9 we show how theoretical wavefields can be computed for sSNRNMATS
and non-SNENMAIS solar models. The principal conclusions of the paper are
summarized in §10.

The system of equations that governs the modal eigenfunctions and eigen-
frequencies of the sSNRNMaIs solar model is presented in Appendix A. The equation
of motion of the non-sNRXMAIS solar model is derived in Appendix B. In Appendix
C, we present a mathematical method adapted from Phinney & Burridge (1973} that
considerably simplifies the application of differential operators to vector and tensor
fields in a spherical geometry which are common in helioseismology. This technigue
is used to calculate the general matrix element presented in §6. Appendix D outlines
the incorporation of the anelastic condition into the general matrix. Appendix E
outlines the derivation of matrix elements for aspherical perturbations in the elastic-
gravitational variables.

2. Reference frames and the separation of the equations of motion

Helioseismic oscillations are currently observed from the Earth’s surface. Space-
based measurements will soon exist, but whether measurements are obtained from
the Earth or from Space, observers require theoretical results reported in a frame
other than the Sun’s. In this paper we refer to three reference frames: a frame we call
the corotating frame that rotates with the average observed angular rotation rate Q
of the solar surface, a frame we call the observer’s frame where helioseismic images
are observed, and the inertial frame. The observer’s frame iz not an inertial frame
because of the Earth’s rotation, its orbital motion, and because of the acceleration
of the solar system. However, since helioseismic data are processed routinely to

Phil. Trans. R. Soc. Lond. A (1992)



The effect of convection on helioseismic oscillations 445

remove the first two of these effects and since the final effect is small, we will
subsequently identify the observer’s frame with an inertial frame which is considered
to be at rest.

{@) On the separability of the equations of motion

If solar convection were perfectly axisymmetric, as is differential rotation, the
seismic equations of motion could be solved either in the corotating or in the inertial
frame. Since axigymmetric flows are stationary relative to both frames, solutions to
these equations separate in both frames, that is:

s(r,t) = P(r)e', {13)

where s(r,t) is a mode of the model, the eigenfunction is ¥(r) and the angular
frequency of the mode is @. However, in the presence of non-axisymmetric structures
or flows, the equations of motion will not separate in both frames. For example,
consider the seismic effect of a single convective feature, say a horizontally polarized
convective vortex corotating with the average rotation rate of the Sun. In the inertial
frame, the convective state of the Sun appears to change with time. Consequently,
a seismic modal displacement pattern represented with time invariant basgis functions
in the inertial frame would itself vary in time. Thus solutions to the equations of
motion will not separate in the inertial frame. However, this convective vortex is
stationary relative to an observer in the corotating frame and the equations do
separate in this frame. For this reason, we present and solve the seismic equations of
motion in the corotating frame.

The Sun is not as simple as this convective model with a single vortex locked into
the corotating frame. Convective features evolve in time and also interact. In
particular, differential rotation would act kinematically to shear convective features.
For example, sectoral giant-cells or banana-cells would be sheared by differential
rotation as, say, an array of vortices initially aligned latitudinally would become
misaligned. Consequently, general convective features are not stationary even
relative to the corotating frame so that the equations of motion will not separate in
this frame either.

Currently, our analysis requires the use of equation (13). Thus, as discussed in
§ 14, the theory presented here governs only flows and structures that are steady-
state relative to the corotating frame. In the sequel all equations will be derived and
solved in the corotating frame. However, we desire to present modal eigenfrequencies
and eigenfunctions in the inertial frame to facilitate comparison with helioseismic
data. We present in §25b the necesgary transformation between the corotating and
inertial frames and discuss briefly how modal frequency measurements made in the
inertial frame differ from those made in the corotating frame.

(b) Transforming from a corolating to an inerlial frame

The major result of this paper is analytical expressions for the eigenfrequencies
and eigenfunctions of a non-sNRNMaTs solar model. We wish to find a way to trans-
form these expressions, derived in the corotating frame, into the inertial frame. Let us
define two gets of spherical polar coordinates relative to which the following position
vectors are defined : ry = (rg, Oy, ¥) in the corotating frame and r; = (v}, 6, ¢;) in the
inertial frame, where 0 and ¢ are colatitude and longitude, respectively. We wish to
derive a means of transforming the mode §F(ry, ¢) (with index j) of the non-sNRNMaTs
solar model in the corotating frame into §(r;,#) the mode in the inertial frame.
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First, note that the colatitudinal and azimuthal angles ; and ¢; are related to 6y
and ¢y in the following way:
6, = Ox, (14)

¢y = dp+ 2L (18)

the functional dependences of 57 and §} on colatitude and longitude are identical so
that by equations (14) and (15):

gjl(rI!t) = j}(h 61% ¢I! t = 5?(7“561%’ ¢R> ty= S';B(ﬂals ¢I_Qts £). (16)

As will be shown in §5, the mode §7*(rg, ) in the corotating frame can be written
as a linear combination of the eigenfunctions s, of the sNrNMATS modes defined in
equation (1):

E?("R:t) —[ pX aji::sk(rR)] eloit

ke K

= Wh(p,) el (17)

The eigenspace K, over which the sum is taken, is defined to contain only those
SNRNMAIS eigenfunctions required to represent the eigenfunction of the perturbed
model. The nature of this sum is discussed in detail in §5. In particular, it is shown
that the expansion coefficients af for a mode j are components of an eigenvector of
the supermatrix, and the coefficients themselves form a matrix called the eigenvector
matrix. The quantity in square brackets iz the eigenfunction of mode j with
frequency w; that we identify as ¥}(rg) and which is time independent in the
corotating frame. Substituting equation (17) into equation (16) yields the desired
expression for the mode in the inertial frame:

§(rt) = §3r, 0, ¢ —24,t) = [ Y ol s5,(r, 0y, géI—Qt)] elest

keK

= Z ajS r B e—imﬂt eiwjt
[ AN T §

keK
= Wi(r, tyelor, (18)

where we have used equations (14) and (15}, the definition of a SNRNMATS
eigenfunction given by equation (1), and the fact that the azimuthal dependence of
a spherical harmonic ¥7*(¢, ¢) is given by exp {im¢).

A comparison of equations (17} and (18) reveals an important difference between
the eigenfunctions in the corotating and inertial frames. In the inertial frame, the
spatial eigenfunctions ¥j(r;,f) are themselves time dependent and provide a slowly
varying envelope function in addition to the harmonic oscillation with frequency a,,
whereas in the corotating frame the spatial eigenfunctions ¥3(ry} are time invariant.
Thus, a mode of oscillation, which by definition has a single frequency in the
corotating frame, becomes multiply periodic in the inertial frame.

For clarity, we consider as an example the case of self-coupling where the
eigenspace K i3 spanned by the (2/41) sxrxMATS eigenfunctions of the muitiplet
«3;. In this case, the eigenfunction in equation (18) can be rewritten

. l r
y’;nl‘(rlat)= Z‘ a’?n,i,m)s(n,l,m)(rl)eﬂmgc! (19)

m=—1
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so that in the inertial frame there are (274 1) frequencies, separated by £, associated
with every eigenfunction. The extra *modes’ are a reference frame effect, and are not
an intrinsic property of the Sun. However, if all convective flows were perfectly
axisymmetric, like differential rotation, then the expansion coefficients af, ; ., would
become Kronecker delta functions d;,, (alternately, the eigenvector matrix would be
the identity matrix) and the eigenfunction in the inertial frame could be represented
with a sNRNMAIS eigenfunction with a simple time dependence:

yﬂm(rR’ t) - S(n, i, m) (rl) e—imQt‘ (20)

Perhaps a more relevant way of viewing all of thig in the inertial frame would be
not in terms of the spatial pattern that oscillates with a single frequency, though this
is the way we have defined a mode of oscillation, but rather in terms of the time
dependence or spectrum of a single spatial pattern. For clarity, let us continue to
work within the self-coupling approximation. Consider a spatial pattern given by a
single spherical harmonic Y7(6,4), the basis function onto which observers
frequently project helioseismic data. Then, we wish to determine the time dependence
of the basis function s, ; ,+(#;}. This is determined by summing the modes in (18)
over the (2/4+1) components of the multiplet and retaining only contributions to

S(n,z,m’)(rl):
2i+1 2i+1
2 E}(rlﬂt)am’m = E .P}("I)BXP (H"jt) 87:n’m
J=1 i=1

21+1
[ Y o, exp {10, t)] Sn, 1 mny (P1) €XP {i{,, —m’L2) 1)

=1
= cDm’("f) s(n,l,m’)(rl) BXP(i(wnz_m’-Q) t): (21)

where we have used equation {19) in the penultimate summation, and set the
eigenfrequency o, = w,, +8w,, where w,, is the degenerate frequency of the multiplet
and dw; is the intrinsic frequency perturbation of mode j caused by structural
asphericities and convective flows.

Projection onto a single spherical harmoniec component would yield a speetrum
that iz the Fourier transform of @,,.(t}exp (i{w,, —m'£2) ¢}, a spectrum composed of a
cluster of (214 1) closely spaced peaks centred at frequency (w,, —m'Q). If the self-
coupling approximation were not invoked, then the functional form of equation (21)

would be the same but the cluster of peaks would contain more than (274 1} elements.

3. Parametrization of convective fiow and asphericities in the
elastic-gravitational variables

All convective and structural perturbations are defined relative to the SNRNMaTS
model. The perturbations include rigid rotation, a convective velocity field that is
stationary in the corotating frame, and static perturbations to the elastic-
gravitational variables. In this section we present the parametrization of each of
these perturbations.

(@) The velocity field and the rotation vector

The velocity field u, is defined with respect to the corotating frame and is defined
to be stationary in this frame as well. Thus u, does not contain a contribution due
to the velocity field (v = 2 x r) of rigid rotation. Rigid rotation is included when the
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resi_ﬂts are transformed back to the inertial frame as discussed in §2b. We later
require an expression for £2:

2 = Qcos 67— Q2in 60, (22)

where Q is.fhe_average angular rotation rate at the solar surface. The velocity field
u, can be decomposed into a sum of poloidal P and toroidal T vector spherical
harmonics

Uy(r) = EZP’ngﬁ Ti(r, 0, ¢). (23)
g=0 {=—¢
The poloidal and toroidal components are fully characterized by the radius
dependent vector spherical harmonie expansion coeflicients u%(r), vi(r), and wi{r):

Pir,0,¢) = ul(r) YI(0, ¢ JF+ui () V, Y28, &), (24)
Tir,8,¢) = YFxV, Y8, ¢), - (25)

where V; is the surface gradient operator given by equation (2) and the normalization
of the spherical harmonics is given by equation (3).
Consistént with formal assumption (3) in §15, the flow field must satisfy the
anelastic condition :
‘ Volpyuy) =0, (26}
which implies that
- 8,(r*py ) = pyrs(s+1) ot (27)

for each s and ¢ in #,. The reality of the ﬁow fields implies that the coefficients in
equation (23) satisfy the conditions wu.'=(—1)ul" 07" = (-1}, and w; =
(— 1)*wt*. In addition, to eliminate convective overshoot at the surface, and to insure
that the general matrix C,, ;, to be derived in §6 is hermitian (see equation (32) of
Lynden-Bell & Ostriker 1967), the radial component of the velocity field must vanish
at the surface. Therefore, we require

u(Rgy) =0 (28)
for each s and ¢.

(b) Perturbations to the elastic-gravitational variables

The structural perturbations d«,, dp,, and d¢, to the elastic-gravitational variables
are defined as follows:

Kk{r, 0, ) = ko(r)+dky(r, 6, $), (29)
P(T’ 6s ¢) = PO(T) +8p0(?7 67 ¢)= (30)
p(r.0,¢) = ¢0(T)+6¢0(Ta 8,9). (31)

In §4b we discuss notation intended to differentiate these perturbations from
selsmically induced perturbations. We consider structural perturbations caused by
the rigid rotation of the Sun, namely its hydrostatic ellipticity of figure, separately
from other structural perturbations most of which will result from convection.
Chandrasekhar & Roberts (1963) have shown the rotation induced perturbations to

r) and ¢y(r) are given by

8pe(r, 8) = (3m)t2re(r)d ,,po Y30, ¢), (32)

Bpe(r, ) = (3m): [5re(r) O, Polr) — 52| ¥3(0, ), (33)
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where ¢(r) is the ellipticity defined in equation (A 11) of Woodhouse & Dahlen (1978).
The ellipticity is the solution of Clairaut’s equation. (See Tassoul (1978} for a
derivation of e(r).) Assuming that the surfaces of constant « in the rotating, elliptical
Sun coincide with the surfaces of constant p, we obtain

Befr, 0) = (tm)dre(r) 0, x,(r) YO, ). (34)

The perturbations d«,,dp,, and 3¢, are @(Q?); contributions from the differential
rotation are much smaller and thus they have been neglected. Having explicitly
accounted for ellipticity of figure, we now expand all remaining quantities in spherical
harmonics to obtain

Srylr, 8, p) = (An)idre(r) O, k,(r) YO, &) +§: z Sxt(r) V(6. &), (35)
8=0 t=—=8
Bpal(r. 0, ¢) = (3m)s3re(r) 0, py(r) Yo(O, $) + s 3 Bpi(r) Yi(6, ), (36)
§=0 t=—g
8po(r, 8, ) = (4n)E[Zre(r) B, ¢ho(r) 1922]Y°6¢+228¢t ) Y8, ¢}, (37)
s=0{=—23

where, of course, the expansion coefficients 6x3(r), 8p3(r) and 84%(r) do not include
contributions from hydrostatic ellipticity. In §6¢ we will use the fact that, due to
Poisson’s equation, the coefficients 8¢%(r) are not independent of the coefficients
Spt(r) to simplify our final expression for the general matrix element.

4. The equations of motion

In this section we derive the equations of motion that govern the acoustic
oscillations of the sNRNMAIS and non-sNrNMAIS solar models. These equations will be
presented in the corotating frame. The numerical solution of the two-point boundary
value problem described in Appendix A yields the seismic eigenfrequencies and
eigenfunctions of the SNrRNMAIS solar model. The eigenfrequencies and eigenfunctions
of the non-sNRNMATS solar model will be calculated by applying quasi-degenerate
perturbation theory (described in §5). The use of this theory produces the general
matrix element (§6}. Calculation of the general matrix element requires an equation
of motion that accurately governs acoustic oscillations consistent with the formal
assumptions listed in §15. The equation of motion appropriate to this purpose is the
major produect of this section and is given by equation (50) together with equation
(B 20) and equations (B 22)-(B 25).

(@) The seismically unperturbed equations of motion

We present here the seismically unperturbed equations of motion of a rotating,
convecting solar model with a general velocity field ¢ and general dependence on the
elastic-gravitational variables. The unperturbed mass continuity and congervation
of energy equations are given, respectively, by

Op/Tt+ V- (pv) =0, (38)
pTDS/Dt = entropy production terms, (39)
where the total time derivative is defined by
D/Dt=9/0t+e V. (40)
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The right-hand side of equation (39) represents the production of entropy through
dissipative processes such as heat conduction, vigeous shearing and expansion,
emission and absorption of radiation, divergence of the convective flux, and so on.
In the absence of entropy production terms, equation (39) states that entropy must
be conserved along streamlines of the motion. In general, such a velocity field cannot
be designed ab initio and this requirement is not naturally incorporated into the
lagrangian describing the oscillations. Rather, we assume in the sequel that the flow
field » satisfies @ priori equation (39}; presumably, this will be the case if in the
numerical implementation of the theory v iz obtained from a self-consistent
dynamical calculation, and if in the practical application of the theory, the relevant
helioseismic observations are produced by a velocity field that satisfies equation
{39). Since in our theory convection and acoustic oscillations do not couple, we can
consider the equations governing convection separately from the equations governing
the oscillations. In our subsequent dizcussion of osecillations, we will assume that the
convective equations have been solved separately and will assume that the
lagrangian variation of the entropy is zero, and, therefore, drop any further
consideration of the energy equation. Ignoring magnetic fields, Reynolds stresses,
and the effects of external body forees, the congervation of linear momentum in the
corotating frame can be written

Do/Di+22 xy=—p'VP-VP, (41)
where the solar potential function @ is defined as
D =¢+y., (42}
and #, is the rotational potential due to centripetal acceleration; i.e.
DxQxr=Vy,, {43)

where i, = —1/2(Q%*—(£2-r)*).
The gravitational potential is governed by Poisson’s equation:

Vig = 4nGp. (44)

As we consider only adiabatic oscillations in this paper, we take the equation of state
to be a function of specific entropy 8 and density to simplify the caleulation of the
lagrangian variation of the pressure.
The equilibrium equations of the reference state governed by equations (41) and
(44) are given by
P VP, = - VF,, {45}
Vig, = 4nGp,, (46)

where @ is the universal constant of gravitation, @, = ¢, + ., and we have dropped
the self-advection term consistent with formal assumption (3). Equations (45) and
(46) are subject to the boundary conditions that ¢,, and the radial components of V¢,
and the traction are continuous across R :

[$o] =0, (47)
[7- V)L =0, (48)
[7-IP,)L =0, (49)

where ['is the identity tensor, and the notation [¢,]* denotes the jump discontinuity
of ¢,, and so forth.
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(b) Model notation and lagrangiaon and eulerian variations due to seismic motion

Any scalar quantity ¢ of the sNrRNMa1s model is a function of radius alone, and we
denote that quantity by ¢},. For example, the elastic-gravitational variables of the
SNRNMATS model are given by «,(r), py(r), and @y(r). We specify eulerian perturbations
with the eulerian change operator 8. To avoid confusion between eulerian
perturbations induced by seismic motion and eulerian elastic-gravitational structural
perturbations to the sNrNMaIs model, we intreduce the following convention to be
followed throughout the paper. The expression 86 signifies the eulerian perturbation
of @ due to seismic motion: e.g. 8k, 8p, and so on. However, 8@, signifies a non-
seismie, structural perturbation to ¢ in the SNRNMAIS model: e.g. d«,, 8p,, and so on.
In addition, we will use the notation 8¢, to indicate the perturbation to any elastic-
gravitational variable ¢ due to hydrostatic ellipticity of figure. The lagrangian
change operator A will denote seismic perturbations only.

(¢) The equations of motion of the SNRNMAIS and non-SNENMAIS solar models

The equation of motion of the non-sy¥rNmAIS solar model is derived in Appendix
B. Quoting the final result (see (B 26)), we obtain

—(py+0py) s +p, T(s) = L(5)+ 8L (s), (50}

where T(s), £ (s}, and 82 ,(s) are defined, respectively, by equations (B 22), (B 20),
and (B 25). The equation of motion of the svrxmaIs model may be obtained from
equation (50) by setting 8p, = T(s) = 8L (s) = 0:

—pyw's = Ls). (51)

Subject to the appropriate boundary conditions, equation (51) along with the
perturbed Poisson equation (B 11) and perturbed continuity equation can be solved
to yield the eigenfunctions and eigenfrequencies of the SNRNMATS solar model ; this is
the subject of Appendix A.

5. Quasi-degenerate perturbation theory

In general, the determination of the eigenfunctions and eigenfrequencies for a
general solar model requires the application of a perturbative, variational, or
numerical technique. We have chosen to use quasi-degenerate perturbation theory,
as distinct from degenerate perturbation theory, to determine these quantities. The
derivation that follows can be applied to a general, non-sNRNMAIS solar model in
which the asphericities (e.g. in the elastic-gravitational variables, in convective
velocities, and so on) are small and are stationary in the corotating frame. The
difference between guasi-degenerate and degenerate perturbation theories lies in the
choice of the eigenspace used to represent the eigenfunctions in each theory. In quasi-
degenerate perturbation theory, the eigenspace K congsists of all eigenfunctions of the
SNRNMAIS solar model with nearly identical degenerate frequencies. We call this
the quasi-degeneracy condition, which we state quantitatively below in §5a. In
degenerate perturbation theory, only the eigenfunctions from sNRNMAIS modes that
are exactly degenerate compose the eigenspace from which an eigenfunction of the
perturbed model is represented. Except in the rare case of an accidental exact
degeneracy, within degenerate perturbation theory these eigenfunctions will share
the same radial order % and harmonic degree I so that there will be (21+ 1) sxrRxMATS
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eigenfunctions contributing to the linear combination for each eigenfunction of the
non-sNRNMAIS solar model. Within quasi-degenerate perturbation theory the basis
functions can differ in = and /.

In §§56b and ¢ we derive the principal result of quasi-degenerate perturbation
theory, the general matrix element, and show how general matrix elements compose
the supermatrix whose eigenvalues and eigenvectors preseribe, respectively, the
modal frequencies and eigenfunctions of a non-sNr¥MAIs solar model. Our derivation
of the general matrix element is general in the sense that we do not specify the nature
of the aspherical perturbations, only, as mentioned above, that they are required to
be small and stationary in the corotating frame. To the best of our knowledge,
Rayleigh’s principle has not been proved for quasi-degenerate perturbation theory.
Thus we first prove Rayleigh’s principle, from which the general matrix element and
supermatrix result directly. Finally, in §5d, we specialize the solution to a convecting
model with asphericities in the elastic-gravitational variables by making reference to
the equation of motion of the non-sNRNMA1s solar model (50). Previous applications
of quasi-degenerate perturbation theory in terrestrial seismology can be found in
Dahlen (1969), Luh (1974) and Woodhouse (1980).

{a) The quasi-degeneracy condition

We motivate the quasi-degeneracy condition by analogy with coupled linear
oscillators. A more rigorous motivation based on a property of eigensystems is
presented in §75. It is a general property of all small-amplitude oscillators, one of
which we are considering a sNRNMATS mode to be, that such oscillators only couple
strongly if the natural, uncoupled frequencies of the oscillators are nearly degenerate.
(Of course, if nonlinear effects are important, oscillators can couple strongly even if
their natural, uncoupled frequencies are significantly different.) Thus within our
linearized theory, in the presence of a general asphericity the only sNRNMATS modes
that will couple strongly are those that are nearly degenerate. Thus the only
eigenfunctions necessary to represent an eigenfunction of the perturbed model are
those from modes that are nearly degenerate in the sNRNMATs solar model. The
number of these eigenfunctions and, thus, the dimension of space K, will depend on
the desired level of accuracy of the caleulation.

We now state the quasi-degeneracy condition quantitively. Define the eigenspace
K to comprise the set of all SNRNMA1s eigenfunctions with degenerate frequencies w,
close t0 w,, our best a priori guess of the eigenfrequency of the mode of the non-
SNRNMATS model. Then, an eigenfunction s, is included in X only if ), is such that

i — w2, < er? for kek, (52)

where ¢ is a small, fixed, dimensionless parameter, and 7° is an angular frequency
whose magnitude will determine the level of accuracy of subsequent calculations. In
the following, e will only be used as a book-keeping device signifying the accuracy of
an equation or the magnitude of an expression and will later be set to unity. For
example, the use of ¢ in equation (52) is intended to signify that fw? — w2 is ¢(e). Let
8 denote the set of all SNRNMATS eigenfunctions and let K denote the complement of
K in 8. Clearly, for small ¢7%, dim (K*) » dim (K), where dim denotes the dimension
of the eigenspace.

There are two primary considerations that govern the size of K. (1) The first is
the value of 7%, the choice of which will depend on the desired accuracy of the
computation. In practice, 7° is chosen such that contributions to the perturbed
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eigenfunctions from modes outside of the eigenspace determined by the quasi-
degeneracy condition can be ignored. (2) The second consideration is that each
eigenfunction admitted to the eigenspace K should satisfy the appropriate angular
gelection rules which are listed in §7¢.

(b) Statement and proof of Rayleigh’s principle for quasi-degenerale perturbation
theory

The use of quasi-degenerate perturbation theory to derive the general matrix
element requires Rayleigh’s principle. The precise statement of Rayleigh’s principle
requires the introduction of the following notation. We generalize the equation of

motion for a mode % of the SNRNMATS solar model with eigenfrequency w,,.

—Po iy 8 = Lo(sy), (63} -
by introducing the following perturbation expansions into equation (53):
L+ F +ef,, (64)
Wy > Wree | €07, (55)
Po > Pot €D, (56)
5, §,+€§,. (57)

A mode of the non-sNrNMAIs solar model will have a single frequency in the
corotating frame. Since the eigenfunctions spanning K have frequencies close to w .,
we express the squared frequency of the mode of the perturbed model with equation
(55) where it should be understood that the eigenfrequency perturbation w? can be
either positive or negative. The operator £, in equation (53) governs the seismic
oscillations of the sNrNMAIS model and should be identified with the operator £, in
equation (B 20). We let e, denote an arbitrary operator that accounts for
departures from a SNRNMATS solar model. In §5¢, we specify its form for convective
fields with asphericities in the elastic-gravitational variables by using equation (50).
Substituting the perturbation expansions in equations (54)-57) into equation (53),
we obtain

—(pytepy) (Wi tew]) (5 +ef)) = (£ +ef)) (5 +63,). (58)

Rayleigh’s principle governs which terms in equation (58) should be retained if we
desire to obtain eigenfrequencies accurate to @(e}). It states that @e} eigenfunction
perturbations e§;, produce ¢(¢?) eigenfrequency perturbations. That is, Rayleigh’s
principle states that the first-order eigenfrequencies are stationary to first-order
variations in the eigenfunctions. Thus to calculate perturbed eigenfrequencies to (/(e)
requires the use of the first-order perturbation equations (54)—(56), but the
displacement eigenfunction in equation (57) need only be retained to 0{e}; i.e.
equation (57) can be rewritten s, — §,.

We now prove Rayleigh’s principle for quasi-degenerate perturbation theory by .
showing that terms e§, can be neglected in calculating the perturbed eigenfrequency
to @(e). First, retaining terms in equation (58) to @{¢), we obtain

0 = (L + o Ofer) 651+ (6L + €01 e) 8y + po €0} §y + (L + po wiey) 8+ Ue®). (59)
Within degenerate perturbation theory, the term (&, + p, wl.) §, is transformed to -
(Zy+py i) s, = 0, but within quasi-degenerate perturbation it is of &(e), so it is
retained. Second, we expand the zero- and first-order eigenfunctions in terms
of the swrwmars eigenfunctions, The zero-order eigenfunction §; is, by the

Phil. Trans, B, Soc. Lond. A (1992)



454 E. M. Lavely and M. H. Ritzwoller

quasi-degeneracy condition, a linear combination of the SNENMAIS eigenfunctions
s for keK, and the first-order eigenfunction perturbations are represented by
eigenfunctions within K*. Thus we write

So= X ays,, (60)
keK

ef; = X b.s,, (61)
keEt

where a, and b, are complex constants.

Now, following the GGalerkin method, we substitute equations (60) and (61) into
equation (59), form the inner product of the resulting expression with s¥, and
integrate over the volume of the solar model to obtain

0= X ebkfs;,'($0+pow§ef)skd3r

ket

+ X ak{Js;,-e(ft’l+plm§ef)skd3r+ew§fposﬁ,-sk d3r+js;c“.-(£fo+p0m§ef)sk dar}.
keK
(62}

Setting e to unity, and using equation (5), we find that equation {(62) can be rewritten

= X by —wn) 0yt T 0yl = T ap0idy,, (63)
reg* keK LeK
where

1
Ly = N;{Jsff"(—-g?1_l31 Wrep) §; A°F — (Wi — })) Ny ak’k} for (&' k)eK.

Zopr =0 for (&, k)¢K.

The matrix Z (with components given by Z,.;) is called the supermatrix. Were it
not for the first term in equation (63), equations (63) and (64) would represent an
eigenvalue problem for the eigenfrequency perturbations w? and the zero-order
eigenfunction expansion coefficients a,. This term cannot be neglected on the basis
of its magnitude since for ke K-+, (02, —w?,) is not guaranteed to be of ¢(¢). In fact,
in general it can be arbitrarily large. However, terms in b, for ke K are non-zero only
for & = k and they fall outside of the matrix of terms in a,, for (k, &’ € K). Therefore,
the terms in b, for ke K* decouple from the terms in a, for ke K, and it is possible
to perform an eigenvalue—eigenvector decomposition of the supermatrix Z. Thus, the
terms in b, do not effect the values of the perturbed eigenfrequencies w? nor the
values of the @, coefficients. Equation (63) can be rewritten as the eigenvalue-
eigenvector problem for w and a,:

(64)

D gl = L 078,010, {65)
keK ke K
This completes the proof of Rayleigh’s principle; perturbed eigenfrequencies can be
computed to (e} by neglecting terms in b,. This results from the definition of the
quasi-degeneracy condition. In practice, the eigenspace K is chosen such that the
frequency difference term (wi,;—w%,) in equation (63) is sufficiently large so that b,

is small enough to be ignored.
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{c) The general matrix element and the supermatriz within quasi-degererate
perturbalion theory

During the proof of Rayleigh’s principle, we obtained the general matrix element
and the supermatrix. In fact, equation (63) is the principal result of quasi-degenerate
perturbation theory. The eigenvalue components of the supermatrix Z are given by
the a, coefficients and the eigenvalues are the eigenfrequency perturbations w?.
Ingpection of equation (64) suggests that the general matrix element should be
defined by

Hgl'lg,ia’z = jS}S (— & (8) — Py Wher 81 A7, (66)

where H}\ .., is the (m’, m) component of the general matrix H,.,, ,, for —' <m’' <1’
and —{ < m < [. Thus the component Z, ., of the supermatrix Z is simply

Zyy = (L/N) {Hg’rg,‘t'z“ (@Fe — w5} Ny Oppt (67)
for (¥, k)eK.
With equation (67), equation (65) can be written as the eigensystem:
ZA = AA, (68)

where A is the diagonal matrix of squared eigenfrequency perturbations, A;;d;; =
(w3);, and A is the eigenvector matrix, each column of which is composed of the
expansion coefficients for an eigenfunction: 4;; = o}. Since the anelastic condition
has been applied to the flow field, Z is hermitian:

Z =AAAY, (69)

where the superseript ¥ denotes hermitian transpose. The squared frequencies of the
perturbed system are given by
0f = Wi+ (W) {70)

and 1 €4 < dim (K). The approximation

(03); ¥ 20, Ow; (71)
may be used so that
w; R Wyep + 00y (72)

Thus, the zero-order eigenfunction of the perturbed system is given by equation (60)
and the expansion coefficients @ are simply the components of the eigenvectors
associated with each eigenfrequency w; Factors of frequency such as w or w,
appearing in the general matrix elements that arise, for example, from the Coriolis
and advective terms in the equations of motion, should be replaced with @,
Degenerate perturbation theory ean be recovered from equation (65) by choosing
Wpet == Gy, Setting »” =n, I’ = [, and by defining K to include only those SNRNMAIS
eigenfunctions that have radial order » and harmonic degree ! {i.e. dim (K) = 2{41).

(@) The general matriz element for the non-SNRNMAIS solar model

We presently specialize quasi-degenerate perturbation theory to the non-sNRNMAIS
solar model (see (50)). The equation of motion governing the oscillations of this model
may be rewritten as

— (0 +8py) (Wrer + 07) (5 +8,) = (Lo + 8L, —p, T) (§+5)). (73)
Phil. Trans. R. Soc. Lond. A (1992)



456 .M. Lavely and M. H. Ritzwoller

Comparing the above equation to equation (58), we may make the identifications
&y =83L,—p, T, (74)
= 8p,. (75)

The general matrix element for the non-sNr¥MAIS solar model can be obtained by
substituting equations (74) and (75) into equation (66) to obtain

Hg’?ﬁl’l = Js}: (o T(sy,) — 8L o(5,,) — 8pg wie; 5, ) dr. (76)

with the (¥, k) component of the supermatrix Z given by equation (67). The explicit
form of H™,, written in terms of the scalar eigenfunctions of the sNRNMATS solar
model is presented in §6 and derived in Appendixes D and E. The construction of the
supermatrix Z in terms of the general matrix elements is diseussed further in §7.

6. The general matrix element

The general matrix element H7™, (equation (76)} determines the strength of
coupling between the sNrNMAIS modes k = (n,{,m) and &' = (n’,I", m’). Following the
discussion in §5, the supermatrix Z {equation (67)) is composed of an assemblage
of general matrix elements. The eigenvalues of Z are simply related to the
eigenfrequencies of the convecting model with aspherical perturbations in the elastic-
gravitational variables. The eigenvector components of Z are simply the expansion
coefficients of the eigenfunctions of the perturbed model; the sNrNmars modal
eigenfunctions act as basis functions. In this section we derive explicit expressions in
terms of the scalar eigenfunctions of the sNrRNMaIS model for the general matrix
clements of a non-sNrNMals solar model with convective flow and aspherical
perturbations in the elastic-gravitational variables.

Our approach to the derivation of the general matrix element differs from the
approach used by Woodhouse & Dahlen (1978} and Woodhouse (1980). Woodhouse
& Dahlen (1978) applied Rayleigh’s principle to derive the matrix elements for an
aspherical Earth model. Due to the presence of internal discontinuities in Earth
models (e.g. the core-mantle boundary), aspherical perturbations to these boundaries
have been modelled. By using Rayleigh’s principle, the origin of the extra terms
required to account for the additional degrees of freedom is clearly evident
{Woodhouse 1976; Dahlen 1976). A proper accounting of deformation to internal
discontinuities introduces considerable complexity to the calculation, Since there are
no firgt-order discontinuities in the standard solar model (though there is a
discontinuity in the derivative of the sound speed at the base of the convection zone},
we have not used the general technique of Woodhouse & Dahlen (1978). Instead, we
obtain the matrix elements by a straightforward perturbation of the equations of
motion, Of course, there are matrix elements in the solar case that are not required
in the terrestrial case. These terms have motivated the present paper, Likewise, there
are terms due to the rigidity, elastic anisotropy, and deviatoric stress of the Earth
that are not necessary in the solar case. The matrix elements derived in this paper
and those derived in Woodhouse (1980) that are common to the Earth and the Sun
are in agreement (see the discussion at the end of Appendix Ed).

The Wigner—Eckart theorem (eq. [5.4.1] of Edmonds £960) states that the general
matrix element of a tensor perturbation operator can be expanded in a series of
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Wigner 3j symbols whose coefficients of expansion are independent of m and w".
Thus the general matrix element can be written

riy, .., .
L m)(nuaﬂsnnn. (77)

The coefficients appearing in the expansion are called the reduced or double-bar
matrix elements and are radial integrals of the form

'R
(Wl ||SH | 7d) = f " gy Smt () 12 dr, (78)
Q

where %V 7? is a vector of kernels that depend on the modal eigenfunctions and the
SNRNMATS model parameters, and émi(r) is a vector of expansion coefficients that
fully proseribes the aspherical scalar and vector fields of the non-sxaxmaIs solar
model. The term on the right-hand side of equation (77) with {s =0,f=0)
corresponds to the spherical part of the perturbation and vanishes for a model with
purely aspherical perturbations. In the following we obtain the reduced matrix
elements for convective flow and for aspherical perturbations in the elastic-
gravitational variables. We present formal expressions for the various contributions
to the general matrix element in terms of vector-integral operations. In Appendixes
D and E we manipulate these expressions to eliminate undesirable derivatives of
SNRNMAIS model parameters and aspherical expansion coefficients. The means of
expressing Hy.™., as in equation (77) is the subject of Appendix C.

For purposes of presentation, it is useful to separate Hjy ", into inertial (or kinetic
energy) T ", and clastic-gravitational (or potential energy) V7 ™., contributions.
Thus, we define

H:an’::,lt’t = Tgﬁmz'af Z?‘:fz't: (79)

where by equation (76}
T = J"OO st T(s,) dr, (80)
= J‘s;f,-(ﬁffo(sk)-ﬁ-ﬁpo et S) APr. (81)

In §§6a,b we decompose T, and V™., into physically meaningful units. In §6¢
we assemble the general matrix elements for all scalar and vector perturbations and
present their form explicitly in terms of the scalar eigenfunetions of the sNrNMAlS
modes and the expansion coeflicients that fully prescribe the asphericities (see §3).

The final result is given by equation (90).

(@) The inertial contribution to the general matrix element

It is instructive to decompose T™™ ., in the form

n'n,l’
T;T';??z't = B%;’?” + ng’;?,zt'zs (82)
where by equations (B 22)—(B 24):
B, = J"O“ st 2iwd x 5, d°F, (83)
Ot = fpo 5% 2iou, " Vs, d3r. (84)
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Clearly By, is the general matrix element arising from the Coriolis force, and
gmm., is due to the advection of modes by differential rotation and the convective
flow field with respect to the corotating frame. The matrix elements are presented in

terms of the scalar eigenfunctions in Appendix D.

(b) The elastic-gravitational contribution fo the general matriz element
To calculate V2™, we substitute 3%, from equation (B 25} into equation (81).

Upon separating terms in 8, 8py, and 8@, we find that V™™, can be written

Vf';?,'z'z = Kﬂﬁz'a"‘R?’mw'i'P;@mz'b (85)
where K7, R™™, and P7™,, denote, respectively, the general matrix elements
for the perturbed bulk modulus, perturbed density, and perturbed gravitational
potential (and its gradient). They are given by

Kﬁ;’[s” = js}c" ‘V(dk, V-5, )d?r, (86)
szygfz’z = jspo{wﬁef S St 8 Voo (Vos,)— st -Vod(s,)— st -[5,-V(Vy) ] dPr
- [s2-Vops. Vot [s-lsVien, Voora, )

le’,:fz’z = ‘[s,f.'{pn(V'sk)Vscpu—V(po 8" VODy)+ 5. V(p, VOPy) —py 5, V(VED,)} dr.

(88)
These matrix elements are reduced and simplified in Appendix E.
(c) The final form of the general matrix element

We now combine the contributions from the inertial and elastic-gravitational
matrix elements to obtain the final expression for the general matrix element. By
using equations (79}, (82) and (85), the general matrix element can be written

ng’;:ft'z = Bm;f,‘z'a +O?’¥?I’I-Kﬁ’ﬁl’l _Rﬁ?:,lz'z _Pg‘;:fl’l‘ (89)
Combining equations (85), (D 1), (D 17), and equation (E 25}, we obtain

'R 'R
Hzl’z’?l’l = 5.;;:’ 8mm’|:2m9wrefj oPo O(T) Tz d?’+%‘g2 (ann’_l(l'l' l)j

0 0

opﬂ Clr)»? dw)}

Ry , 0 8 I s l Ry
w8 | B rdrvan- 1y Sy 5 (00 D [Psan g

0 s=0 =g\ 0
+8p5(r) BV (r) + 2wreg poliug(r) Bylr) + iwg(r) Hoy(r) +wiy(r) To(r))} o dr, (90)

where the constant factors are given by

Ys =V ((2s+1)/4m), (91)
EI" = am’m(ﬂm 3£’£+%Slm Sz’+1,m3u’+2 +%‘Sz'm Sz+1,m3;5’z+2)7 (92)
[d+myd—m) ]
Sim _[(2l+1)(2l—1) ’ (03)
_ 2
I+ 1)—3m 04)

m (91— 1) (214 8)
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and the sensitivity kernels are given by
Cir) =(UV'+UV+ V), (95)
R,(r) = {UU—-U DB +3V'V =V NBEY (96)

H(r) = - U+ =L@+ DY D) B + (V'V) BEA+ -V UBRS = U VB

(97)
Tr) = r {UVHVU=UU=WVIHI+ D) +V T+ 1) —s(s+ 1)} BE, (98)
E(r) = 3e(r) [k B (1) — (1 + 1) K(r)) + po(B(r) — (3 + 3) R(r))], (99)
K (r) = (U +F)(U+F)BY, (100)
R®(r) = RWO(r QiT:_Gl {r J [(s+ 1) GP(r) —rQP(r)]dr

gl f?”{&Gf’(f) +rGP(n) d’"} , (101)
{1

RP(r) = [— i VI +r 18" V+ 8§V ) +4g,rH(U'V+ VU BEY
+[80Gp, UU + 8¢ + 8T — w2y, UL —Lg, (dr U + U'F + UF)] B, (102)
GPO(r) = oo MUV ++ WUV — UV —2FV') BUF .
1o, r WUV 0 TV =TV —2FV) BES +p, v 20 s(s+ 1) B, (108)
GP (r) = §po r UV BES + 30y U VB —po(F'U+ U'F) B, (104)
Kir)y=—(U+FyY T+ +1) =11+ 1)+6)r V)
— (U +F) U0+ 1) =TT +1)+6)r71T),  (105)
R(r) = F(r8¢' +4nGp, v U +g,U")
+ITT + 1) =1+ 1)+ 6) UV (02— 7 2g,) + 37 2g, UV
Fr B M+ D) I+ ) =6 V=1 ('+1) U]
+ F'(r8¢ +4nGpyrU+ gy UV + 36+ 11+ 1) — ' (1'+ 1)) U V(i —7g,)
4+ 3 g, UU+r B+ 1)+ T+ 1) —8) V' =l + 1) U], (106)
Ry = YU+F)(=U+F + ' + 1) =l +1)+6) 17V
+Y U +FY(—U+F+((+1)=T+1)+6) ), (107)
Bir) = {4+ D) +U T +1)—6) 2r V'8 —wly; V')
+1U7[28¢ + 8nGp, U~ wiy U— {1+ 1)
P+ 1)+ 6) gy r WM+ D HE U +1)—6) (20 1V 8¢ — w2y VT7)
+1U[28¢ + 87Gp, U — i, U — V(T + 1)~ + 1)+ 6) g, v V'], (108)
Fry = r 2011+ 1)T), (108}
Fr)y = QU =T+ 1) V), (110)
where C(r) is the Coriolis kernel, E(r) is the elipticity kernel, K (r) is the bulk modulus
perturbation kernel, R{®(r) is the density perturbation kernel, &,(r) and H,(r) are the

poloidal flow kernels, and 7,(r) is the toroidal flow kernel. The velocity field

expansion coefficients wui(r), vi(r), and wi(r) are defined by equation (23), and the

expansion coefficients for the elastic-gravitational perturbations 8«%(r) and 8pf(r) are
Phil. Trans. R. Soc. Lond. A (1992)



460 E. M. Lavely and M. H. Ritzwoller

defined, respectively, by equations (35) and (36). The factor 4 and the ellipticity e(#)
are defined, respectively, by eqs (A 10) and {A 11) of Woodhouse & Dahlen (1978).
The coefficients BN+ are defined by equation (C 44). The scalar eigenfunctions of the
sNRNMals modes are given by 8¢, 8¢,U and V. The kernels corresponding to
perturbations in the gravitational potential 8¢, and its radial derivative 3¢, have
been incorporated into the density perturbation kernel (see eqs (A 48)—(A 50) in
Woodhouse 1980). The Wigner 3j symbol in equation {90) can be computed
numerically by using the algorithm of Zare (1989).

The first integral in equation (90) represents the effect of the Coriolis force. The
second term models the effect of the spherical part of the centripetal aceceleration.
This term does not satisfy the diagonal sum rule derived in §7d. The reason for this
is that the reference model is the sNRNMAIs model rather than a rotating model that
includes a spherically symmetric body force distribution representing the spherical
average of the centripetal force. The third integral in equation (90) represents the
effect of elipticity and the latitude-dependent part of the centripetal acceleration. To
see that this term models the latitude dependence of the centripetal acceleration,
compare E(r} to eqs (97) and (A 14} of Woodhouse & Dahlen (1978). The fourth
integral in equation (90) models the effect of convective flow and aspherical
perturbations to the elastic-gravitational variables.

We note that by perturbing the sound speed ¢, (where ¢, = 1/ (x,/p,)), the elastic-
gravitational kernels can be transformed from perturbations in «, and p, into
perturbations in ¢, and pg:

Bici(r) K o(r)} + 8 (r) B3P (1) > Bel(r) [2p ¢ K ()] + Bpl(r) [RP (r) +cg K ()], (111)

where 8¢k(r) is the spherical harmonic expansion coefficient for the (s, #) component
of the aspherical perturbation to the sound speed and is defined by the relation

Beolr.6.6) = X X () Y1(60, ). (112)
s={) t=—58
"This expansion is for all aspherical perturbations of ¢, independent of effects induced
by rigid rotation; the ellipticity kernel need not be adjusted.

7. Properties of the supermatrix

In §6, we presented expressions that can be used to compute the general matrix
elements that compose the supermatrix Z given the eigenfunctions of the SNRNMAIS
model and the vector spherical harmonic representation of a stationary convective
velocity field and asphericities in the elastic-gravitational variables. In this section,
we discuss properties of the supermatrix. Much of our discussion focuses on
considering which sSNRNMAIS modes can couple due to a given convective flow field or
asphericity. We say two sNrNMAIS modes & and % couple if their eigenfunctions
contribute to the linear combination representing an eigenfunction of a non-
sNRNMATS model. That is, they couple if the expansion coefficients o}, and @, are non-
zero in equation (6). The strength of coupling is dependent on factors we will diseuss
below. In the remainder of this section we discuss (1) how to construct the
supermatrix, {2) a new rationale for the quasi-degeneracy condition based on a
consideration of the properties of eigensystems, (3) the angular selection rules that
govern which SNRNMAIS modes can couple in the presence of a specified convective
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flow field or asphericity in the elastic-gravitational variables, and (4) other
considerations that affect coupling strengths, notably the characteristics of the radial
kernels that compose the general matrix elements. These discussions are the subjects
of §§7a—c, respectively. In addition, in §7d we discuss a property of the average
frequency of modes composing a split multiplet that is also a direct consequence of
the Wigner—Eckart theorem. This property is known as the diagonal sum rule.

(@) Constructing the supermatrix

Again, let k= (n,l,m) and ¥ =, 0',m’). Equation (67) shows that the
supermatrix Z is the sum of two matrices, a diagonal matrix with entries (w2, —wZ,)
and general matrices H, ., ;. Let us consider the construetion of the supermatrix for
a narrow frequency band around a given multiplet S5, with degenerate frequency w,
in accordance with the quasi-degeneracy condition. We include the modes from all
multiplets with eigenfunctions in K, the eigenspace of all modes whose degenerate
eigenfrequencies lie in the specified band. With a notational shift defined directly
below, the supermatrix can be written:

(W)~ L, )

Z = 0

.. H,, H, H, ..
+| .. H_, H, H, ..|, (113)
Hl—l Hlﬂ Hll

where the normalization factors N, have been absorbed into the general matrices. In
this notation, the matrix H, is the gplitting matrix governing the self-coupling
among the sNRNMATS modes of ,8,;. That is, returning momentarily to cour original
notation for the matrix elements, it includes the general matrix elements H7'"™, as
follows:

H;lfl Hf‘l()

—11
- nn, il nn, ll Hrm,li
— 01 00 01
H{)O - H:vm,li H'nn,ll Hnn,li (114)

1-1 10 11
Hrm, i Hnn I Hnn, 11

The azimuthal-order superseripts in equation (114) determine the location of the
matrix element within the diagonal block splitting matrix. All matrices on the
diagonal of the right-most term in equation (113) are square splitting matrices
governing the self-coupling among the sNrRNMATS modes for each multiplet in K. The
subscripts denoting each diagonal block H, are positive or negative depending on
whether the degenerate frequency of the multiplet w,, is greater than or less than
wyer- The off-diagonal coupling blocks H; represent the coupling terms between
multiplets identified with the ¢ and j subscripts. These blocks are composed of the
general matrix elements H7™,, and are not square since —I'<m’' <, but —I <
m < l. Consider, for example, the off-diagonal block H ;, where the multiplet .S,
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has a lower degenerate frequency than ,8;. Again, returning again temporarily to
our original notation for the matrix elements, this non-square matrix would appear
as follows:

PR

—11
n'n, 'l n'n, il Hn.'n, i1
— 0—-1 06 01
Hfll} - Hn’n,z‘i Hﬂ’n,t’l Hn’n,” . (115)
1- 10 11
Hoywm H H

n'n, il nn,ll

Under degenerate perturbation theory only self-coupling is allowed, so the
supermatrix would be block-diagonal, being composed only of the splitting matrices
H;;. In this case, no coupling could take place between multiplets, only within each
individual multiplet. This is a useful way to envision how degenerate perturbation
theory approximates quasi-degenerate perturbation theory. We will investigate its
accuracy numerically in a later paper.

The hermiticity of the supermatrix (i.e. Z = Z7, where the superscript T denotes
the complex conjugate transpose) is tantamount to the property that the real general
matrix elements HZ'™, are invariant under the swapping of the primed and
unprimed indices and the complex elements are skew-gsymmetric. An ingpection of
equation (90} reveals that H7'™,, satisfies these conditions and, therefore, that the
supermatrix, composed of general matrix elements, is hermitian. If the anelastic
condition on the flow field had not been applied, then the complex matrix elements
composed of the purely imaginary poloidal flow kernels R, and H, would not have
been skew-symmetric (as can be seen from (C 32) and (C 33)) and the supermatrix
would not be hermitian. The hermiticity of Z guarantees that the modal frequencies
computed from the theory presented here are purely real.

(b) The quasi-degeneracy condition reconsidered

In §5, we motivated the quasi-degeneracy condition by referring to the general
property of linear oscillators, that they only couple strongly if their unperturbed
frequencies are nearly degenerate. Understanding that modal frequencies are
eigenvalues of the supermatrix now allows us to reformulate the condition more
rigorously, basing it on a property of eigensystems. Consider the following symmetric
2 x 2 matrix:

—4 e
M—[ . %A} (116}
By analogy with the supermatrix above, the off-diagonal elements ¢ represent
coupling terms. In the absence of the coupling terms, the eigenvalues of & are +34.
Assuming 34 > |¢| (i.e. 4 # 0), the perturbation to the positive eigenvalue caused by
the off-diagonal elements is approximately

v=c/A. (117)

That is, the positive eigenvalue of the matrix & is approximately 14 +v. This
formula continues to hold for any otherwise diagonal n x » matrix with a single pair
of symmetric off-diagonal perturbations. For a general # x #n symmetric matrix, the
eigenvalues are related nonlinearly to any pair of off-diagonal perturbations.
However, v remains a good approximate measure of the effect of any single pair of
off-diagonal elements and we call it the coupling strength coefficient. It is a measure
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of the potential of any off-diagonal pair of coupling terms to affect the
eigenfrequency.

The coupling strength coefficient decreases linearly with the difference between
diagonal elements linked by the off-diagonal pair of coupling terms. Applied to the
supermadtrix, this means that v decreases linearly as the difference between the
eigenfrequencies of two modes of the axisymmetric model. This observation is
the basiz of the quasi-degeneracy condition. Off-diagonal perturbations to the
supermatrix effectively perturb eigenfrequencies only if the diagonal elements are
nearly degenerate.

(¢) Selection rules

We discuss in detail the selection rules that govern coupling of SNRNMAIS modes
through convective flow and elastic-gravitational asphericities. As stated in §5a,
the satisfaction of the quasi-degeneracy condition alone does not guarantee that an
eigenfunction of mode & will be included in K. The mode must also satisfy certain
selection rules, the result of which would guarantee that the mode can couple with
at least one other mode in K. In terms of the supermatrix, this means that each
column of Z would have at least two non-zero elements.

The Wigner—Eckart theorem (equation (77)) guarantees that the general matrix
element H7™,, can be decomposed into a sum over products of Wigner 3j symbols
and reduced matrix elements (n'l’ || 8H']| nl). As discussed in Appendix C, the Wigner
37 symbol is proporticnal to the integral of the product of three generalized spherical
harmonics over the unit sphere. Since such surface integrations are insensitive to the
radial orders of the modes, any selection rules on » and »” must be inferred from the
reduced matrix elements. In §§7¢(i) and (ii), we obtain, respectively, selection rules
that follow from the Wigner 3j symbols and from the reduced matrix elements. In
each of these subsections we first consider selection rules governing the general case
of cross-coupling. We then apply these rules to the special case of self-coupling, and
list these selection rules separately, denoting them with the subscript sc.

(i) Selection rules from the Wigner 3j symbols

We state here two general selection rules resulting from properties of the Wigner
3j symbols that apply both to coupling caused by convective flows and by elastic-
gravitational asphericities. The range in  and I” over which the sNRNMAIS modes k
and &° can couple depends on the range in harmonic degree s of the spherical and
vector spherical harmonic basis functions that represent convective flow and
structural asphericities. From the property of Wigner 3§ symbols in equation (C 43),
we find that the harmonic degrees I, I, and s must satisfy the following triangle
inequalities:

i—sl <1,
selectionrule 1 |s—{| < 1, (118)
=7 < s.

For example, consider coupling between two modes whose harmonie degrees differ by
2; say, I’ =4 2. Then the application of selection rule 1 guarantees that 2 < s <
2[4 2. We consider this example further in a discussion of differential rotation in §8.
In the special case of self-coupling (»" =n, I’ =1), selection rule 1 reduces to a
particularly simple form:

selection rule 1,, (0 < s < 2L (119)
Phil. Trans. B. Soc. Lond. A (1992)
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That is, under self-coupling a mode is only sensitive to convective flow and aspherical
structure with harmonic degree up through degree 21i.

The second general selection rule also follows from equation (C 43). It states that
modes with azimuthal order m and m’ will couple only if there exists a component
of convective flow or aspherical structure with azimuthal order ¢ such that

selection rule 2 and 2,, —m +t4+m = 0. {120)

Selection ruie 2 holds in identical form in the self-coupling case. Thus, when the
azimuthal order of convection or aspherical structure t = 0,m" = m; when { = +1,
m =m+t1; when t==+2, m =m=+2; and so forth. Thus, as mentioned in §7a, the
contribution to a splitting matrix by axisymmetric structure is on the diagonal, the
contribution by { = + 1 convection or aspherical strueture is on the first off-diagonal,
and so forth,

(i) Selection rules from the reduced matriz elements

We consider here properties that can be deduced from the reduced matrix elements
for convective flow and elastic-gravitational asphericities, the integral kernels of
which are listed in §6¢. The reduced matrix elemcnts can be constructed by
comparing the expression for the general matrix element in equation (90) with the
form given by the Wigner—Eckart theorem in equation (77). The reduced matrix
elements for convective flow are proportional to the poloidal flow kernels R, and H,
(equations (96} and (97)), and to the toroidal flow kernel T, {equation (98)). The
reduced matrix elements of the poloidal flow terms are for an anelastic velocity field ;
selection rules resulting from the reduced matrix elements for a general velocity field
would be different. The reduced matrix elements for the elastic-gravitational
asphericities are proportional to the kernel X, (equation {100)) and to the kernel B{?
{equation (101)). The kernels R, H,, K, and R are proportional to either B{%;" or
B+ (defined by (C 44}). These coefficients are non-zero only if the sum I'+1+s is
even. Thug the snrnmars modes & and £ cannot couple through poloidal flows or
through perturbations to the density and adiabatic bulk modulus unless the sum
I'+1+s is even. The toroidal flow kernel T, is proportional to B{Y;. This coefficient
vanishes unless the sum ' +1+ s iIs odd. Thus, the SNRNMATIS modes k and %" cannot
couple through a toroidal flow unless the sum I +7+4 s is odd. These observations are
encapsulated in selection rule 3:

. R =H =K =R»=0 if I'+l+sisodd
lect 1 s e T ’ 121
selection rule 3 To=0 if I't+i+siseven. } (121)
In the case of self-coupling, selection rule 3 simplifies congiderably :
B,=H,=0,
selection rule 3, T =0 if siseven, (122)

K,=R® =0 if sisodd.

By selection rule 3., the poloidal flow kernels R, and H, vanish for self-coupling.
Thus under the self-coupling approximation or within degenerate perturbation
theory, an anelastic. poloidal velocity field does not couple sNrRNMAIS modes. In
addition, only the odd degree s component of toroidal flows couples SNREMAIS modes.
In summary, only odd-degree toroidal flows and even degree elastic-gravitational
asphericities couple or gplit SNRNMaTs modes within self-coupling.
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Figure 3. (2) The quantity +/(p,U?) plotted as a function of radius for the multiplets |,8,,
(3.25013 mHz), ,,8,, (3.25001 mHz), ,8,, (3.24038 mHz), and ,S,, (3.24786 mHz). The shapes of
the eigenfunctions U and ¥V {see (b)) in the upper region of the convection zone depend primarily
on the degenerate frequencies of the multiplets. Eigenfunction shapes at a constant frequency are
similar even for widely differing harmonic degree I ———— n =8, 1=84;, o n =9, 1=
70; - e—e— = 11,1 = 49; . v =14, [ = 30. (b) The quantity +/{p, V*) plotted for the
same multiplets as in {¢). This plot illustrates that the eigenfunctions ¥ in the upper region of the
convection zone are strong functions of their degenerate frequencies.

Under self-coupling, the radial poloidal flow kernel E, in equation (96) vanishes
identically. However, the radial poloidal flow kernel also vanishes approximately for
near surface flows for crosg-coupling since, as can be seen from figure 3« and b, nearly
degenerate modes have similar eigenfunctions UV and V near the solar surface. Thus
(UU—UU) = (VV~T'F) ~0 and we can list the following approximate selection
rule:

approximate selection rule 4 R, = (¢ for near surface flows. (123)

Thus the radial component of flow does not strongly affect acoustic waves strongly
near the solar surface.

(d} The diagonal sum rule

In this section we derive the diagonal sum rule and the super-diagonal sum rule
which state that the average frequency of a split multiplet or set of split, coupling
multiplets remains unchanged by a perturbation in the model such as convective flow
or asphericities in the elastic-gravitational variables. The diagonal sum rule applies
in the self-coupling approximation, and asserts that the average frequency of a split
multiplet is simply the degenerate frequency of the multiplet. Tt was first proven by
Gilbert (1971). The super-diagonal sum rule extends the diagonal sum rule to
coupling multiplets. Although the former is a special case of the latter, we find that
for purposes of presentation, it is advantageous to derive the diagonal sum rule first.

Firat, we consider self-coupling. We begin by using the well known fact that traces
of matrices with the same characteristic polynomials are identical. Tt follows that
similar matrices have the same trace. Let the matrix A diagonalize the splitting
matrix H,, ;;; i.e.

W—A'H,, , A, (124)
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where Wis the diagonal matrix containing the (21+ 1) eigenvalues 2w, dw; of H,,, ;.
Therefore, the trace of H,, ,, is given by

2i+1

I
trH,, = % Hpi'y= 20, X 8“’,4‘ (125)
. Pt

. nn, il
We use the Wigner-Eckart theorem to perform the sum in equation (125). The
diagonal elements of the splitting matrix can be obtained from equation (77) by
setting m’” = m. Using selection rule 2, we find the only non-zero Wigner 3j symbol
in the Wigner—Eckart decomposition for the case m” = m is given by the term with

t = 0. Thus, the trace of H,, ; can be written

w© i
= 0 Ciml® o1
wH,, = 3 (0 [3HS] ol [mz( T | (126)
It is a property of Wigner 3j symbols that
! 8 I 1
x(=n" =0 for s+#0. (127)
m=—i 0 —m m

The reduced matrix element (nl||8HY| nl) is identically zero for purely aspherical
perturbations. Thus for a model containing purely aspherical perturbations
equations (125)—(127) together imply that

2l+1

2 Ow; =0, (128)

=1
which is the degired result. Equation (128} is known as the diagonal sum rule. It
implies that the average frequency of an isolated multiplet is simply the degenerate
frequency of the multiplet; i.e.

1 2i+1
CT] jZ {wn+Bw) = o, (129)
-1

It is important to note that the centripetal acceleration term in the equation of
motion contains a spherically symmetric component. Therefore, this term and all
other spherically symmetric terms will not satisfy the diagonal sum rule.

Second, we consider the case of cross-coupling between two or more multiplets. We
agsume that all sSNRNMATS modes k that compose the multiplets are members of the
eigenspace K. For example, if we consider the multiplets .8, and ,.§,, dim (K) =
2(1+ 1 +1). Proceeding az before, we take the trace of the supermatrix Z (equation
(67)) to obtain

dim (K)
trZ= % [Hg‘?é’,"m - (w?ef - w?u)] 8n’n 31’! am’m = 2wref Z Bwja (130)
keK i=1

where we have used equation (71) and for simplicity we have set the normalization
constants N, to unity. By virtue of equations (126) and (127}, equation (130) can be
rewritten

dim {K)
= (wil _(‘)Eef) an’n al’l 8m’m = eref z 6(""3'! (131)
ke K i=1
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Figure 4. The solid line i3 the difference in eigenfrequency between an acoustic mode of
Glatzmaier’s {1984) model of convection and the corresponding eigenfrequency of an acoustic mode
of the differentially rotating model ordered by frequency perturbation. The multiplet considered
here is .8, Frequency shifts caused by this model of convection are probably below the observable
threshold. However, since Glatzmaier’s model contains no flows in the top 156% of the convection
zone where convective velocities are greatest, the frequency shifts shown here should be considered
lower bounds. The dotted line is the residual of the frequency profiles of the twe models as given
by their respective Legendre polynomial fits each of which was truncated at degree N=25
(frequency splitting data is often represented in terms of low-degree Legendre polynomials by
observers). This figure illustrates the failure of the low-degree polynomial fit to capture the high-
order behaviour of the actual frequency residuals.

dim (K)

so that T @00k = T (20 b0+ 0ly), (132)

nleK fu=]

where by equation (70) the terms 2w, 8w, + @i, are simply the squared frequencies
of the non-swrwMAIS modes. Thus the average frequency of the modes is given by

! dim(K)z & 2 = 204+ 1) 2 133
dim(®) 5 Gt = G e (8

which is the generalization of the diagonal sum rule in equation (129), and is what
we call the super-diagonal sum rule.

(e) An example calculation

In Lavely & Ritzwoller (1992) we present extensive numerical results using a
model of convection generated by Glatzmaier (1984). Here, we simply show that the
frequency splitting of a given multiplet under degenerate perturbation theory
displays a symmetry property. In particular, the frequency perturbations produced
by an odd-degree toroidal velocity field when ordered from the smallest to the largest
perturbation had odd symmetry with respect to the degenerate frequency. This is
illustrated in figure 4 for the multiplet ,S,,. In this calculation we used Glatzmaier’s
toroidal velocity field as given by the expansion coefficients w! for (1 < s < 30;

Phil. Trans. R. Soc. Lond. A (1992)



468 E. M. Lavely and M. H. Ritzwoller

—38 £ { £ 5), odd 5. The largest frequency perturbation with respeet to the differential
rotation is approximately 0.1 pHz. This is probably an under-prediction since the
velocity model contains no flows in the top 15% of the convection zone where
convective velocities are preatest.

8. Differential rotation under quasi-degenerate perturbation theory

The estimation of the differential rotation profile of the Sun from measurements
of p-mode frequencies has been of central importance within helioseismology (Brown
ef al. 1989 ; Christensen-Dalsgaard ef af. 1990; Thompson 1990). The inversion of the
frequencies for the differential rotation requires a forward model that accurately
relates the data to model parameters that characterize the rotation profile. To date,
all solutions of this problem have used degenerate perturbation theory (Cowling &
Newing 1949; Ledoux 1951; Hansen et al. 1977; Gough 1982; Brown 1985;
Ritzwoller & Lavely 1991). In this section, we discuss the application of quasi-
degenerate perturbation theory to differential rotation. In §8a, we specialize the
results of §§5 and 6 to obtain the general matrix element for differential rotation. In
§8b, we present the selection rules that govern the sets of sSNRNMATS modes that will
couple due to a given degree s of differential rotation. For illustrative purposes, we
show in §8¢ how general matrix elements compose the supermatrix for the case in
which sNRNMATS modes from the two multiplets .5, and S, are allowed to couple;
i.e. when the eigenspace for representing the perturbed eigenfunction is spanned by
the eigenfunctions of only two multiplets. In §8d, we obtain the frequency splitting
formulae of Ritzwoller & Lavely (1991) as a special case of the results in §8a.

(a) The general malriz element for differential rotation

The general matrix element that governs differential rotation can be obtained by
restricting the velocity fleld u, (defined by (23}) to include only those terms that
represent the velocity fleld of differential rotation. This velocity field is divergence
free, axisymmetrie, and symmetric about the equatorial ptane of the Sun. Thus,
differential rotation is represented with odd-degree toroidal expansion coefficients
wi(r):

()= T —ul(r) FxV,¥0.4). (134)

$=1,3,5,...

Let 7, denote the general matrix element that governs modal interactions due
to the first-order effect (in u,) of differential rotation alone. It may be obtained by
discarding all terms in €77, (equation (D 17)) except for those containing the
expansion coeflicients w?(¥) for (s = 1,3,5,...}:

Am'm m’ - s ¥ l Eo o 2
On’n, A 3mm( — )" 8w Y Yy b3 Vs pows(r) Ti(r)r* dr,

5=1,3,5,... 0 m —m/),

(135)
where the kernel T (r) is given by equation (98}.
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By using the properties of the Wigner 37 symbols cited in Appendix C and the
definitions of the factors Q% and B{Y)*, we may rewrite T,(») in the form

Ts(-r)=—(1—(—1)l'“+6)9395(§ ] _;)
X UV +VU—UU=WVII+ 1) +UE+ ) —s(s+ D} (136)

The Wigner 3j symbols in equations (135) and (136) can be computed either with the
algorithm of Zare (1989) or by the following recursion relation:

(s+1 v z): Ay, (137)
0 —m m) (U +1P—(s+1)F][(s+ 1) —(I—1) ]

where

. U 1 (s—1 o
Ay =_(4S+2)m(9 m)—{{{l+l’+1)2—82] [32._(3_lf)2]}§(80 )7

0 —m —m m
(138)
which can be derived from equation (5u} of Schulten & Gordon (1975).

(B) Selection rules and the supermatric

Since s is always odd for differential rotation, it follows from selection rule 3 that
coupling between modes with harmonic degrees ! and " through degree s of
differential rotation can ocour only if I’ = I+ 27, where j is an integer. Upper and lower
bounds on j follow from the triangle inequalities in selection rule 1:

=142 where (0<j5<is—1)). (139)

Thus, for ¢ = 1, coupling is restricted to I’ ={; for s = 3, coupling is restricted to
UV'=1,11+2; for s = 5, coupling is restricted to (I’ =1, [+2, I' =1+4); and so on for
higher degree s. In addition, selection rule 2 assures us that m’ = m since { = 0 for
differential rotation. There are no selection rules on the radial orders » and »’. The
dependence of C‘n,n! rponn and » is given entirely by the scalar eigenfunctions in the
kernel T(r). However, the quasi-degeneracy condition in equation (52) assures us
that only nearly degenerate modes can couple strongly.

(e) An example of quasi-degenerate coupling

To illustrate the structure of the supermatrix Z {equation (67)) and the coupling
that is allowed by the selection rules for a particularly simple case of quasi-
degenerate coupling, we consider the coupling of all modes of the SNRNMAIS solar
model that compose the multiplets 8, and .8, (where n and »’ shall remain
unspecified). Thus we define the eigenspace K to be composed of the modes (n,{ =
1, —1sm<)and (#,l' =3, —3 < m’ < 3). There are two types of coupling that
can occur; self-coupling (" = n, I’ =1) and cross-coupling (»” # »r, or I’ # [}. Since
m’ = m by selection rule 2, the supermatrix will display a banded structure and modes
from the multiplet .8, with [m’| > 1 will not couple with modes from the multiplet
51 From gelection rule 1., self-coupling can occur for 8, enly when s = 1; for .8,
when s =1, 3, 5. Cross-coupling can occur only for s = 3, The two cross-coupling
pairg are given by (=1 m=1], [I'=3, m' =1]), and (=1, m=—1], [I' =3,
m’ = —17}. The modes with m = m’ = 0 do not couple since in this case their general
matrix elements identically vanish due to the selection rule in equation (C 42).
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Before constructing the supermatrix for the special case described above, we
introduce new notation for clarity. For the remainder of this subsection, we suppress
the subscripts #» and »’ in the matrix element 6’?;"'” and rewrite it as 6{?'{; We define
the squared reference frequency wZ,; as the average of the squares of the degenerate

frequencies of the two multiplets:

Wrep = Fl0py + Wirg]- (140)

Defining the frequency difference factors as follows:
=4 = 20, — i), (141)
4 = 2wy — tres), (142)

the supermatrix Z (equation (67)) in the context of the above discussion {neglecting
the Coriolis force, centripetal acceleration, ete.) can be written

[Cibgi-14 0 0 0 0 Oyt -0 0 0 0 7
0 —14 0 0 0 0 0o 0 0 0
0 0 Oy, 0 0 0 0 Clily 0 0
0 0 0 Gy +14 0 0 0 0 0 0
0 0 0 0 G434 0 0 0 0 0
o 0 0 0 0 Catat+id 0 0 0 0
0 0 0 0 0 0 L% 0 0 0
0 9 it 0 0 0 0 Chl+4 0 0
0 0 0 0 0 0 0 0 0%, +14 0
L o 0 0 0 0 0 0 0 0 %% +14]

where we have set the normalization constants N, to unity. The vertical and
horizontal lines partition the supermatrix into four blocks ; the upper left-hand block
is the self-coupling block for the multiplet ,9;, the lower right-hand block is the self-
coupling block for the multiplet ,.S;, and the off-diagonal blocks are the quasi-
degenerate coupling blocks. Due to the selection rules, most of the components of
these blocks are identically zero. Each off-diagenal term links the opposing diagonal
elements. Thus, the general matrix element Cf;;, signifies the coupling of the (I =1,
m = 1}and (I = 3, m = 1) modes. By equation (117), the coupling strength coefficient
v in the case of the mode pair ({ =1, m = 1) and ({ = 3, m = 1) is given by
VR (0%1’,13))2/(0&,111 _0(1.3".13) + 4} (143)
The numerical application of this formalism to determine quantitatively the size
of the coupling terms will be discussed in a later paper. A qualitative discussion,
however, is sufficient to establish that quasi-degenerate coupling through differential
rotation will have little effect on modal frequencies and can be ignored for all
practical purposes. An inspection of the solar dispersion diagram reveals that for
intermediate I modes (I & 50), 4 & 30 pHez for " = I+ 2. Since the coupling terms will
be no larger than ce. 0.1 pIz, the eigenfrequency perturbation caused by quasi-
degenerate coupling will be less than v & | nHz. This will be a slight frequency
repulsion of every other mode within the multiplets with harmonic degrees f and [+ 2.
That is, the frequency of each affected I mode will decrease and the frequency of each
affected [+ 2 mode will increase. However, the interaction of each [ mode with each
I—2 mode of the same m, will act on the [ modes with the opposite sign and will
counteract this already small effect. Thus almost certainly, the seismic effect of low-
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degree differential rotation through quasi-degenerate coupling can be practically
neglected. This is not true for a general non-axisymmetric flow field, since there will
be many possible near degeneracies (Lavely & Ritzwoller 1992).

{d) Dhifferential rotation under degenerate perturbation theory

The general matrix element governing the splitting caused by differential rotation
under degenerate perturbation theory is a special case of equation (135). Ritzwoller
& Lavely (1991) treated this problem in detail. Their formulae can be recovered by
(1) setting w,; = w,,» =n, I'=1, and m" = m in equation (65), (2} defining the
eigenspace K to include only the (2/+ 1} modes (n,I, —I < m <), (3) defining the
splitting matrix H,, ;, (equation (79)) to include contributions from the splitting
matrices B, , ;; (equation {83)) and C,, , (equation (84)) only, and (4) including only
the axisymmetric, odd-degree, toroidal component of the velocity field u, that
appears in the splitting matrix C,, ,,. Performing operations (1)—(4), the general
matrix elements for differential rotation and the Coriolis force under degenerate
perturbation theory arve given by

Fim . ® e 1 1y (B
O?Tn?zlt = 6m’m( - 1)m. Sﬂtz)m ’le 2 Vs (0 m _m)f Po wg(r) ins(r) 7'2 d’)", (144)
5=1,3,5,... ]

RO
B, = 8, 20, m2 f PoRUV + V)12 dr, (145)

nn, il
0

and (7} is given by

8 I i

qg(r)=—(1—(—1)8)(95)2(0 . _l)r-l[zUV—U?—g A+ 1) —s(s+1)].  (146)

The supermatrix eigenvalue problem in equation (65) can be written:

! !
Y a, [Bpl+Cnm ] =2N w, B a,0wb,.,. (147)

an,l
m=—1 m=—1
For reasonably small s, analytic expressions for Wigner 3 symbols with the special
forms in equations (144) and (148) can be obtained by specializing the recursion
relationship in equation (137). The latter can be simplified considerably by setting

R ] M 1 (148)
where we have defined
[ @-st P
FS_[(21+3+1)1 | (149)

Substituting equation (148) into equation (137) and setting { =/, a recursion
relationship for the HP coefficients can easily be derived:

H™ | = (s+ 1)1 [2(2s+ 1) mH™ — s(41(I+ 1)+ 1—s) H™ . (150)
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To initiate the recursion we require the values of HJ' and H7'. These are given by
(H' = 1) and by (HT = 2m). Values of H} for (0 < s < 11) have been tabulated in
Ritzwoller & Lavely (1991) (see (39)—(44) and (A 4)—(A 9) in that paper).

In this notation, %™, can be rewritten

Oy = 8pm 42+ 1) 0, (20 Sy, H HIF?

8=1,3,5,...

X JRO Py [2UV =P — VIl + 1) —4s(s+ 1)]rdr, (151)

0

and we have used the fact that s is an odd integer. The solution to the forward
problem given in Ritzwoller & Lavely (1991) (their eq. (32)) iz equivalent to the

relation _
Wy = 0y + (12N w,,) (O + BRY 1 —mi2, (152}

where 6‘;",;’?‘1: accounts for the effect of differential rotation, B7,™, accounts for the
Coriolis force, and the term m& transforms the frequency from the corotating to an
inertial frame in accordance with equation (20).

We note that the w} expansion coefficient in Ritzwoller & Lavely (1991) is defined
to include the velocity field due to rigid rotation whereas the w] expansion coefficient
in this paper is defined to include only departures from rigid rotation in the radial
coordinate. We also address a potential point of confusion. Some authors define the
time dependence of a mode to be given by exp (—iwt) (e.g. Gough 1982), whereas
others define the time dependence to be given by exp (iwt} {e.g. Hansen ef al. 1977).
These differing conventions lead to differing signs on the right-hand side of equation
(152). The convention used in this paper and in Ritzwoller & Lavely (1991) is
consistent with that of Hansen et al. (1977).

9, Theoretical wavefields

In this section we show how to construct theoretical wavefields for sNRNMATS and
non-sNRNMATS solar models. The calculation requires a representation of the source
of acoustic energy. We adopt the prevailing view that the solar p-modes are excited
by acoustic noise generated by turbulent convection near the solar surface. Goldreich
& Kumar (1988) have shown that acoustic emissions vary roughly as the eighth
power of the Mach number. Consequently, Brown (1990) has suggested that most of
the emission originates from that small fraction of the flow volume containing the
very highest velocity flows. By assuming a simple probability distribution for the
flow speeds, Brown (1990) estimates that this fraction is approximately 0.5%.
Brown (1990} also suggests that the sustained flows that produce acoustic energy
have lifetimes that are a fraction of the solar granulation turnover time. It follows
that the acoustic source is highly localized in space and short-lived in time, rather
than smooth, and temporally continuous. We adopt this argument to obtain an
expression for the acoustic displacement field in which the acoustic energy is
generated by a superposition of discrete sources each of which are localized in space
and time. In §9a we derive an expression for a theoretical wavefield of a SNENMAIS
solar model and generalize the result to a non-sNRNMaIs solar model in §95.
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(a} Theoretical wavefield for a sSNRNMAIS solar model

From Biot (1965) and Dziewonski & Woodhouse (1983), it can be shown that in a
perfect fluid the most general local linear relationship between stress and strain is

given by
ﬂj(") = 3ij[’<o(?‘) — Py(r}] 8, u, + Fy{r) 0 Uy, (153)

where Tj; is the stress tensor and it is assumed that the medium is perfectly
spherically symmetric and, in its equilibrium configuration, the stress is purely
hydrostatic. The quantity u, is the ith component of the displacement. Equation
(153) will break down when nonlinear processes are important. Near the solar surface
where acoustic energy generation is most sighificant, the Mach number approaches
its peak value of approximately 0.3. The turbulent flows in these regions will lead to
strains that are not linearly related to the corresponding stresses so that equation
(153) would be invalid. Similarly, the linear stress—strain relationship breaks down
in the fault ruptures that generate terrestrial seismic waves. For this reason, in the
modelling of the terrestrial source process, Backus & Muleahy (19764, b} introduced
the stress glut tensor I';; defined by the relation

Ty =Tys)= T (154)

The symmetric tensor I' represents the difference between the stress predicted by
equation {153) when the true physical displacement s is substituted, and the actual
gtress T. In the picture of Goldreich & Kumar (1988) and Brown (1990), the stress
glut tensor vanishes in all regions of the Sun except those where the turbulence is
most vigorous. The source regions are defined by those regions of space where
I(r,1) is non-zero. Clearly, I'(r,t) will display a very complicated dependence upon
position and time.

The force density that drives the acoustic oscillations is simply given by the
divergence of the stress glut tensor; Le.

Ar,ty ==V -L(ri1). {155)
Thus the equation of motion governing the forced oscillations of the Sun is given by
poli = Lou—V-I, {156)

where &, is defined by equation (B 20).

When f = 0, the solution to equation {156) is given by 5,(r) exp (i, f). These modes
are simply the free oscillations of the sNRNMAIS solar model. To solve the
inhomogeneous equation (156), we introduce directly into the equation of motion the
effect of intrinsic attenuation and rewrite equation (156) as:

pPoli+2opyti—Fou=f, (157)

where the term in & models attenuation. Following Dziewongki & Woodhouse (1983),
we seek u(r,f) in terms of an eigenfunction expansion:

u(r,t) = 2Lag(t) s,(r), (158)
k
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and solve for a,(t). Upon inserting equation (158) into equation (157), taking the
inner product of the resulting expression with s¥(), and using the orthogonality of
the sNrNMALS modes (equation (4)), we find

Guft)+ 20t dy) + 02y (t) = Filt)/ V. (1)

where the source function F,(¢) is given by

Fu () = Js;f(r) Ar, 6y d®r, (160)
where N, is defined by equation (5) and we have nsed equation {51). The attennation
coeflicient a, is related to the quality factor @, by the expression o; = w,/2Q,.

Before proceeding further, it is useful to consider in greater detail the nature of the
source process. Brown (1990) suggests that a typical linear dimension of the source
is given by a fraction of the dimension of a typical solar granule which ig
approximately 1200 km. In addition, the source lifetime is given by a fraction of a
solar granule turnover time which is approximately 480 s. A typical wavelength of
acoustic modes for I = 100 is approximately 44000 km. In addition, the typical
modal period iz 300 s. Thus, for low and intermediate degree modes, the linear
dimensions of the source region are smaller than the smallest modal wave-lengths
included in equation (158). However, the source duration time is likely to be
comparable with or greater than the modal periods of interest. Thus we are justified
in representing the source volume as a spatial delta-funetion, but we will retain the
arbitrariness of the source-time function. The time history of individual source
valumes will be assumed to be finite in duration.

We define an acoustic source as any deformation process that violates the linear
stress—strain relationship in equation (153). The acoustic wavefield is generated by
multiple sources so that the total body force density is given by the sum of force
densities for individual sources:

flr )y =Zf(r.t), (161)

where ¢ is the source index. For multiple sources the source function F,(¢) in equation
(160) becomes

Fi(t) = ZF3), (162)

where Fety = Js,f () fAr, 8y d3r. (163)

By the arguments above, each source function Fg(f) has finite time extent. Thus,
Fo) # 0 only in the time interval ] <{ < (5. (164)

Equation (159) represents an inhomogeneous damped harmonic oscillator equation
with constant coefficients. Methods of solution for this type of equation are well
known. In terms of the Green’s function method, the solution is given by

a(t) = 1% J'l Gt t) F, (')t (165)
kJ—om
= %2 Gult, 1) Py dr, (166)
ko J-w
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where the causal Green’s function, G, (1, t'), for a damped harmonie oscillator (Kumar
el al. 1988) is given by

G, 1) = G Hit—1) exp [ —a(f—£)]sind,{t—1"), (167)
where H{t) is the Heaviside step function, and
i = wi—oak. (168)

For typical solar p modes, w, > a,, and therefore, we replace &, with w, so that
G,.(t. ¥} becomes

Gt t) = e Ht—tYexp[— o, (t—8) ] sineg(f—1). (169)

Integrating equation (166) by parts, and assuming that the time derivative of each
source function Fg(f) vanishes before the source began to be active and also after it
hag ceased to act (these time intervals are specified in (164}), we obtain

z[ (=) Py dy (170)

= B (£) Kk S F(L), (171)

where ¥ denotes the convolution operator, the overdot signifies a time derivative
here, and
hy(t) = (1 —e™%f cos (w, 1)) /N, wi. (172)

The expression for a,(f) in equation (171} represents the time history of the acoustic
digplacement-field for a superposition of source processes and is geen to be a simple
convolution of a harmonic resonance with the sum of all source functions. In terms
of the stress glut rate tensor, F(f) is given by

Fo(t) = —Js*"“’(r) (V- I7(r, )] 3. (173)
By combining equations (170}, and {173), a,(f) is expressed as
a(t) = — k() * ZJ §*© (1) [V To(r,1)] dPr, (174)
T vV,

where it has been assumed that I(r, ¢} vanishes outside of the volume region V,. By
applying the divergence theorem, o.(t) can be rewritten

ak(t)=k,c(t)*2j (e ty: e®x(ry dr, (175)
o JV,

where e (r) is the strain tensor and is defined by the relation
@ (r) = L[Vs® (1) + 5% (r) V]. (176)

As argued previously, the volume region V, is small relative to a typical modal
wavelength appearing in equation (158). For example, the dimension of the source
region relative to the wavelength of an /= 100 mode is approximately 2%. The
relative smallness of the spatial region suggests the substitution

ety Ie@r i 8%r—r,) (177)
Phil. Trans. R. Soc. Lond. A (1992)



476 E. M. Lavely and M. H. Ritzwoller

in equation (175) to obtain
() = hylt) = STV(r,,1): €P¥(r,). (178)

Clearly, a,{!) is the convolution of the harmonic resonance of the mode with the
source-time history of the stress glut rate tensor projected onto the appropriate
strain components. Equation (178} together with equation (158) define the total
displacement field for the sxr¥MAaIS solar model:

u(r,t) = Sh (D)« ST, 1) e®*(r ) s5,(r)
ke T

= ¥ [cos (e, t) e %% 3 af(r_, t) 5,{F), (179)

T

where the source coefficient af is defined by the relation

al(r,.t) = —M(r,,t): e¥*(r } /N, o}, (1801

where M®(r_,t) = I'"{r,,t) is the moment rate tensor of the oth source, and where we
have substituted from equation (172) retaining only the non-static term.

(b) Theoretical wavefield for a non-SNRNMAIS solar model under degenerate
perturbation theory

Following Woodhouse & Giirnius {1982), we now show how equation (179) may be
transformed to yield the expression for a wavefield in a non-sNrNMAIS solar model.
For clarity of presentation, we consider the special case of self-coupling (degenerate
perturbation theory) in which only those modes that compose the multiplet 8, are
atlowed to couple. The procedure consists of rotating the vector of source coefficients
with elements given by ef, k= (n,l. —I < m <), and the sNENMaATs basis functions
s™(r) into the normal coordinates of the non-syrN¥mars solar model, and by
introducing the split frequency spectrum. If we normalize the splitting matrix for the
multiplet ,S; by the factor 2w, then by equation (124), the diagonal matrix A
containing the frequencies 8w, associated with the jth eigenvector of the splitting
matrix is given by

A=AH, A (181)
where A is the eigenvector matrix that diagonalizes the normalized splitting matrix
H,, , and where the dagger symbol {f) denotes the complex conjugate transpose.
From Woodhouse & Girniug (1982), the displacement field generated by the oth
source, and associated with the multiplet |8, is given by

Uy (r,t) = (5p; A) exp [i(A + (0, +iay,) 1) ] x (Aa" (1)), (182)

where T and I denote, respectively, the transpose operation and the identity matrix,
a” and s, denote, respectively, the vector of time-dependent source coefficients and
of basis functions for (—{ < m < [}, and where we have assumed o, = a,,.

Ag discussed in §2, the transformation to the stationary frame is accomplished by
the variable transformation ¢ — ¢ — 2t where 2 is the average angular rotation rate
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at the solar surface. Noting that the azimuthal (¢) dependence of s%(r} is given by
exp (im¢), and using index notation for clarity, we obtain

o

2l4+1 I 2l+1
uy(r,t)y= % X A,,8550r) X A}ia’g(t)*/\?('ﬁ)» (183)
i :

i=1 — i=1
where the lorentzian function AJ*{(#) is given by
AP (1) = exp [i{w,,; + 0w; — mE2) t] exp (-~ ). (184)

The total displacement field is

u(r.t) = T X u,(r,1), (185)
o n,l
where the sums are taken over all sources and all multiplets. The generalization of
equation (185) to quasi-degenerate perturbation theory is straightforward ; it suffices
to increase the dimension of the eigenspace in equation (158) so that SNRNMAIS modes
from more than one multiplet are included.

10. Summary and conclusions

The purpose of this paper has been to derive a theory that governs the effect of
steady-state convection and associated asphericities in the elastic-gravitational
variables (adiabatic bulk modulus «, density p, and gravitational potential ¢) on
acoustic frequencies and displacement patterns and to present a formalism with
which this theory can be applied computationally. The theory is not intended to
predict modal amplitudes since these are governed, in part, by the exchange of
energy between convection and acoustic waves, which is excluded since our theory
is linear and since the convective flow is defined to be anelastic. We have made no
simplifying assumptions about the geometric structure of the convective flow and
structural asphericities, and have represented these vector and scalar fields with
general global basis functions, vector and scalar spherical harmonics, respectively.
We also represent the eigenfunctions of the spherical reference model (the sNRNMAIS
solar model} with vector spherical harmonics. These representations allow us to use
quagi-degenerate perturbation theory in a straightforward manner to derive the
general matrix elements Hj:™,, that govern the modal coupling induced by the
perturbations. Formulae for the general matrix elements are presented explicitly in
terms of the scalar eigenfunctions of the SNRNMAITS solar model. Thus, the use of this
theory requires only the following quantities: (1) a SNR¥MATS solar model («x(r) and
p(r)), (2) the seismic scalar eigenfunctions of the sxrxmais solar model (,,Uy(r), UL,
25207, WV, 0¢,(r) and ,8¢,(r}), and (3) the spherical harmonic representation of
convection (u}(r),v4{r}, and wi(r)) and/or asphericities in the elastic-gravitational
variables (8«i(r) and 8pi(r)) at each radial knot of the sNrRNMATS solar model. The
general matrix elements compose the hermitian supermatrix Z, whose eigenvalues
are the eigenfrequency perturbations of the general non-sNRNMAIS solar model and
whose eigenvector components are the expansion coefficients in the linear
combination forming the eigenfunctions (or displacement patterns) in which
SNRNMAIS eigenfunctions are basis functions.
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The major constraint on the application of the theory presented here is that we
have assumed that the convective flows and asphericities are stationary in time.
Consequently, we view this paper as the first step toward a more general theory
governing time-varying flows. Nevertheless, a number of the consequences of the
theory will hold for time-varying flows as well. Most importantly, the selection rules
listed in §7 will hold for non-stationary flows. For example, under self-coupling {or
within degenerate perturbation theory), by selection rules 1., and 3,,, only odd-
degree s toroidal flows and even degree structural asphericities with s < 27 will couple
and/or split modes with harmonic degree 1.

The next stage of this research will be the numerical implementation of the theory
by using a realistic model of global-scale convective flow and associated structural
agphericities. The goals of the work include: (1) The determination of the accuracy
of degenerate perturbation theory relative to quasi-degenerate perturbation theory.
(2) Numerical estimates of the effect of convective flow on helioseismic observables
such as frequencies and line-widths. A preliminary result is shown in figure 4 and
further calculations are presented in Lavely & Ritzwoller (1992). (3} A determination
of the characteristic signatures of convection to aid observers in establishing the
existence of giant cell convection. (4) An estimation of the effect of a time-varying
stress glut rate on theoretical power spectra. (5) A determination of the relative
importance of perturbations to the elastic-gravitational variables as compared to
convective flow flelds. For example, Kuhn ¢t al. (1988} observed a surface
temperature variation of several degrees from the solar south pole to the solar
equator and hypothesized that this or a similar structure may be responsible for the
non-zero even-degree frequency splitting coefficients. Given an equation of state,
these temperature variations could be expressed in terms of the perturbations §p2(r)
and 8x0(r). Although the depth extent of the observed temperature variation is
unknown, different hypothesized depth structures could be constructed. By using the
theory presented here, the general matrix elements and, hence, the splitting caused
by each temperature model can be computed.

In closing, since this paper is long, it is worthwhile to present a road map through
the major results. Modal notation and terminology are discussed in § 1¢ and model
notation and terminology are presented in §45. The major assumptions of the theory
are presented and discussed in §15, and are justified in §§ L and 1¢. The mathematical
representation of convection is in equations (23)—(25) and the representation of the
elastic-gravitational variables is in equations (29)—(31) and (35)-(37). The equation
of motion for the perturbed model with first-order perturbations including rotation,
ellipticity in the structural variables, centripetal force, convective flow, and
asphericities in the elastic-gravitational variables is given by equation {50). The
general forms of the general matrix element and the supermatrix are shown in
equations (66) and (67), respectively, and the general matrix element for the
perturbations listed in the previous sentence is in equation (76). The explicit form of
the general matrix elements suitable for computation, written in terms of the scalar
eigenfunctions of the sNRNMAIS solar model, can be found in equation (90) with
notation and the integral kernels defined in equations (91)—(110). We consider this
the main result of this paper. Three selection rules governing coupling are listed in
equations (118}, (120), and (121), with the self-coupling form of the selection rules in
equations (119), (120), and (122). The diagonal sum rule and the super-diagonal sum
rule are stated and proved in §7d. The general matrix element and selection rules for
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differential rotation are in equations (135) and (139), respectively. In §9 we show how
theoretical seismograms for SNRNMAIS {equation (179)) and non-SNRNMAIS (equation
(183)} solar models may be computed for a model source process. All results of the
paper are presented in a {rame corotating with the Sun. Equation (18) can be used
to congtruct the perturbed eigenfrequencies and eigenfunctions of a non-SNERNMATS
solar model in an inertial frame. An example of the application of equation (18) is
given in equation {183) where we obtain an expression for a theoretical seismogram
of a non-sNRNMAIS model in the inertial frame.

We are grateful to Addrian Van Ballegooijen for insightful criticism and numerous discussions, and
for providing us with a stellar evolution code. We appreciate John Woodhouse’s assistance in the
derivation in Appendix D, and for adapting his normal mode program to calculate solar
eigenfunctions. In addition, we wish to thank Timothy Brown, Douglas Gough, Thomas Jordan,
Robert Noyes, Juri Toomre and John Woodhouse for continuous support and encouragement. We
thank Edmund Bertschinger and Pawan Kumar for valuable conversations. We have adopted a
suggestion made by John Wahr which simplified the proof of Rayleigh’s principle in §5. The
computer support provided to us by Jeremy Bloxham and Richard (FConnell is greatly
appreciated. We thank Philipp Podsiadlowski for providing his solar model and Gary Glatzmaier
for providing the numerical simulation of convection used to generate figure 4. Part of this work
was completed at the Institute for Theoretical Physics at the University of California, Santa
Barbara. This research was supported by the National Science Foundation under Grants no.
PHY89-04035, no. ATM-88-05194, no. ATM-88-05546, and by NASA under Grant no. NAGW-
1677. E. M. L. was partly supported by a NASA Graduate Student Fellowship. The National Center
for Atmospheric Research is sponsored by the National Science Foundation.

Appendix A. The two-point boundary value problem governing the
eigenfunctions and eigenfrequencies of the SNRNMAIS solar model

For clarity and uniformity of presentation, we present below the four coupled first-
order differential equations that govern the eigenfunctions and eigenfrequencies of
the modes of the sNrNmMaIs solar model. Of course, equivalent systems of equations
have been derived elsewhere; e.g. eqs (17.14)—(17.17) in Unno et al. (1979).

The equation of motion for the swrxMaIS model (equation (51)) with the operator
&, defined by equation (B 20) together with the perturbed Poisson equation
fequation {B 11)) and the perturbed continuity equation provide a coupled system of
first-order ordinary differential equations that can be solved for the scalar
eigenfunctions U, V, 8¢, and 845, and eigenfrequency . The eigenfunctions U and V
fully prescribe the vector eigenfunction s.(#). In component form, the set of four
coupled first-order differential equations can be written:

U
d | AP
dr | 8¢
¥
—2/r+Dyg, Dip,—1/k, D 0 2
— pol —Dgg+4g,r7 + 0 —Dyg, pol —Dgo+ {4+ 1)/r) —Po AP
- 4GP, 0 —(I4+1)/r 1 3¢ |’
drGpo Dy, — (I+1}/7) 4nD 4drnGp,D (I—1)/rd Ly
(A1)
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where g, = ¢, is the acceleration due to gravity, and where we have defined
¥ =8¢+ (I+1)8¢/r+4nGp, U, (A 2)
D =li+1)/rw {A3)

The eigenfunctions {7, AP, 8¢, and 1 must satisfy two inner and two outer boundary
conditions. The outer boundary conditions are

=0 at r=ER,, {A4)
AP =0 at r=R,. {A5)

These boundary conditions were obtained by perturbing the boundary conditions in
equations (47)-(49) and by using the perturbed Poisson equation. The inner
boundary conditions can be obtained from eqs (13.7} and (13.8) of Unno et al.
{1979). In our notation, these are given by

18p—18¢ =0 for r~0, (A 6)
re?U~UAP/py+g,U+06¢) =0 for r~0. (A7)

The system of equations (A 1) subject to the boundary conditions in equations
{A 4}-(A 7) can be solved, for example, with the relaxation method described in Press
et al. (1988) or with the more sophisticated technique described in Woodhouse (1988).
Regardless of the method of solution, we also require U, 8¢, V, and V. Once the
eigenfunctions U7, AP, 8¢, and v are calculated, expressions for U/ and 8¢ follow
directly from equation (A t). The eigenfunction V ig given by

V= (1/rw*) (g, U+ AP/p,+3¢) (A 8)

and V is obtained by direct differentiation of equation (A 8). Finally, we note that
AP = —x,V 5

= — ko [U+ QU ~I{1+1) V)/r]. (A 9)

Appendix B. Derivation of the equation of motion for the non-
SNRNMAIS solar model

In this appendix we derive the equation of motion governing the seismic modes of
the non-s¥rNMAIS solar model. The lagrangian and eulerian seismic variations are
specified in § Ba. In §Bb, the results of Lynden-Bell & Ostriker (1967) are extended
by introducing aspherical perturbations to the elastic-gravitational variables.

(@) Lagrangion and eulerian variations due to seismic motion

The lagrangian change operator is defined by the operation

AQ = Q(r+s(r,t),t)—Q0(r, £, (B 1)

where () and @, are the values of a scalar or vector quantity with and without
oscillations, respectively, and s{r, ¢) is the displacement undergone by a fluid element
that would have been at 7 at time ¢ in the absence of oscillations. This should be
contrasted with the eulerian change of @ which is given by 8¢ = Q(r, t) —Q,(r. ). The
lagrangian and eulerian operators are related to first order in the seigmic digplacement
s(r,t) by

A=5+5V. (B 2)
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The eulerian and gradient operators commute; i.e.
[V.3]=0, . (B3)

whereas the lagrangian and gradient operators do not.

Since by formal assumption (1) in §1b, we are assuming that convection is
stationary relative to the corotating frame, the space and time dependence of the
seismic motion separate in that frame and can be written

s(r,b) = s(r)elt, (B 4)

analogous to equation (13). Consistent with formal assumption (2), the oscillation
amplitudes are assumed to be small, so all perturbed quantities presented in the
following are linearized in s(r).

If the equations of motion of a solar model do not include the advective part of the
material time derivative (as with the sNrRNMATs model), the equations of motion
governing seismic oscillations can be obtained with equal ease by taking either the
lagrangian or eulerian variation of the unperturbed motion equation. However, if
the reference state to which oscillations are added includes a velocity field, then the
lagrangian rather than the eulerian variation should be taken since the lagrangian
change operator A commutes with the material time derivative:

(D/Di,A] = 0, (B 5)

whereas the eulerian change operator 8 does not.
We require the seismic lagrangian perturbations Ar, Ap, Ap, AP, and A¢ derived
by Lynden-Bell & Ostriker (1967):

Ar=s, (B 6)
_Di+s) Dr_ Ds
A= —H D~ D B
Ap=08p+s5-Vp,=—p, Vs, (B 8)
Agp =B8p+s-V,, (B 9)
ap P P, (0l P P
AP=() A +() AS=°( )A g vs (B10)
op)s " T\8S), 7 T p\olp s T p, TPT T

where Ap was obtained by using the eulerian variation of the mass continuity
equation (8p = —V-(ps)), and AP was obtained with the condition that the seismic
motion ie adiabatic; i.e. AS =0. The eulerian perturbation in the gravitational
potential 8¢ can be obtained by solving the perturbed Poisson equation:

V2og = drliép. (B 11)
The eulerian seismic perturbation of the solar potential function @ is given by
3P = 3¢, (B 12)
and the structural perturbation is
oD, = d¢gp,+ By,
= 0¢h, + ., (B 13)
since ¥, = 0 in the sSNRNMAIS solar model.
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(&) The equation of motion

To derive the equation of motion, we (1) take the lagrangian variation of the
momentum equation (equation (41)), (2) assume the flow is steady state and signity
this by replacing v with u,, (3) use equations (B 5)—(B 7) to simplify the inertial terms,
and (4) introduce the modal ansatz given in equation (B 4). These operations produce
an equation equivalent to eq. (28) in Lynden-Bell & Ostriker (1967):

Polr) [ —w?s + 2iw(t, V) 5+ 2iwfd X s+ 21082 x [(uy- V) 5]+ (1, V) (8, V) 8] = L (s),
(B 14)

where
2,(s) = (Bp/po) VP, — A(VP)~ p, A(VD). (B 15)

Consistent with formal assumption (3) in §1b, we drop terms that depend
quadratically on u, and we drop terms of the order (u,) since these will be quite
small for the Sun. Thus, equation (B 14) becomes

PN [ — s+ 2iw(u, V) s+ 2iwf2 x 5] = L (s). (B 16)

We now seek to transform the operator &£, into a form equivalent but slightly
different from the corresponding operator in Lynden-Bell & Ostriker (1967) ; the new
form proves more convenient for the calculation of the general matrix elements in §6.
The first term in 2 can be rewritten by using equations (45) and (B 8):

(Ap/po) VE, = (V"5) po VP, (B 17)
The second term in &£, can be rewritten:
A(VP) =38(VP)+ 5 V(VE,)
=VéP+s:V(VP,)
=—V(k,V'8)—V(s:VFP,) + 5 V(VF,)
= —V(k,V 5} +V(p, s VP,)—5V(p, VD), (B 18)

where we have used equations (45), (B 2), (B 3) and (B 10). The third term in &, can
be rewritten:

(
(

PoA(VD) = p, B{VP)+ pys- V(VD,)
= po VOP +po5-V(VDy), (B 19)

where we have used equations (B 2) and (B 8). Equations (B 156) and (B 17)—(B 19)
together yield:

Ly(8) = (V-8) po VP + V(x, V' 5)—V(py5- VDo) +5-V{p, VBy) ~p, VO

— o5 V(VD,). (B20)
From equations (B 16) and (B 20) we obtain

—powis—+p, T(s) = £y (8), (B 21)

where we have defined
T(s) = B(s)+ C{(s), (B 22)
and B(s) = 2iwf x 5, (B 23)
C(s) = 2iwn,- Vs. (B 24)

It remains to introduce the aspherical perturbations in the elastic-gravitational
variables x,, p,, and ¢, given by equations (29)-(31). We use the notation 8%, to

Phil. Trans. R. Soc. Lond. A (1992)



The effect of convection on helioseismic oscillations 483

indicate the perturbation to the operator & due to the static perturbations in these
variables. Taking the eulerian variation of the elastic-gravitational variables in £,
and retaining terms to first-order in these perturbations, we obtain

8L, (s) = V(dk, V- 5)+(V-5+5:V) (p, VoD, +3p, Vi) — V(py(s VD)
+ Bpa(5~ Vb)) — 5, VOp(5) — Bpy s V(Vo) — py 8 V(V8D,). (B 25)

Finally, from equation (B 21), the equation of motion in the presence of static
aspherical structure and a steady-state velocity field in the corotating frame is given

by
—(pa+3py) W+ py T(s) = L (5) + 3L (5). (B 26)

Appendix C. Converting differential operations on vector and tensor &lds
to algebraic operations in spherical coordinates

We show how a mathematical technique developed by Burridge (1969) and
Phinney & Burridge (1973) can be applied to simplify the calculation of general
matrix elements. The technique relies upon representing components of vectors and
tensors in terms of generalized spherical harmonics Y7'™(0, ¢) (see equation (C 3)).
The utility of the generalized spherical harmonics is that they transform differential
operations acting on vector and tensor fields into algebraic operations. Furthermore,
the integration of products of generalized spherical harmonics are easily expressed in
terms of Wigner 37 symbols. Burridge (1969) defines a set of canonical coordinates in
which the nnit basis vectors of the coordinate system are the spherical unit vectors
e, = Sile,+ie,), e, = €,, and e_ = Hi(e,—ie,), where (¢,, e,, e,) are the cartesian unit
vectors. Phinney & Burridge (1973} provide the rules of vector-differential calculus
appropriate to these canonical coordinates.

In these canonical coordinates the rules governing operations such as the inner
product, the formation of gradients, and so forth are unfamiliar. For this reason, we
present an alternative, hybrid technique that takes advantage of the properties of
the generalized spherical harmonics, but at the same times preserves the familiar
rules of vector-differential calculus. This is accomplished by retaining the basis -
vectors F, 8, and @, and by using the generalized spherical harmonics to express the
components of vectors and tensors.

The hybrid technigque may be summarized as follows. (1) Scalar functions (e.g. the
elastic-gravitational perturbations 8p,, d«,, and 3¢} should be expanded in terms of
the spherical harmonics in equation (C 4) (with index N = 0}. (2} The components of
vector functions (e.g. the seismic displacement s;, the velocity field u,) should be
expressed as in equations (C 15)—(C 20), and the components of second-order tensors
should be expressed as in equations (C 22)—(C 30). (3) Vector-differential operations
should be performed using equations (C 6) and (C 7), and equation (C 21). (4) The
identities cited in §Cd can be used to integrate products of generalized spherical
harmonics over the unit sphere.

() Generalized spherical harmonics
The generalized spherical harmonics are related to the matrix elements of the finite

rotation operator D{a, 8,v), where {(«, £, 7) are the Euler angles. The matrix elements
are given by
Donmlee, B,7) = (I |Da, B,7)| Im), (C1)
= o™l ()07 ©2)
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(see eq. (4.1.11) in Edmonds 1960). The generalized spherical harmonics are
defined in terms of the &!., functions by the relation

YimO,¢) = Din(9.6,0) = di,, (6) e, (C3)

where the function dl,, (8) is defined by eq. (4.1.23) of Edmonds (1960). The spherical
harmonic Y*(8,¢) (equation (3)) is a special case of the generalized spherical
harmonics:

Yo, ¢) =y, Yi™6. 4), (C4)
where v = A (204 1) /4R). {C 5)

The generalized spherical harmonics satisfy numerous identities and recursion
relationships (Gelfand & Shapiro 1956). In our application, the most useful of these
are given by

dYF™(8, §)/d6 = J(Q4 Y170, ) — QL N1, 4)), (C 6)
((Ncos@—m)/sin @) Y™, ¢) = (4, Y V™0, 5+ QL YN 76, 4), (CT)
where Q= \/(§(l+N) (I—N+1)). (C8)

Higher derivatives of ¥}Y™(#,¢) with respect to & can be calculated by repeated
application of equation {C 6); e.g.

IYT™(6, ¢) = MA[QLUY P8, )+ YI™ (8, ¢)) — 2624 YI™(0, ). (C 9)

(b) Representing vector fields with generalized spherical harmonics

By eq. (2.2) of Phinney & Burridge (1973), vectors expressed in terms of the unit
basis vectors (F, 8, @) are transformed to the canonical representation by the relations

vl = Vz[vg-i-qu}, W=up, »= ﬁ[—ve-i-i%], (C10)

and the (—1,0,1) components are expanded in the form
= SO Y o= Sl T vt = S, TP (€ 11)
im lm

The expansion coefficients »#! and »},, may depend on the radial coordinate. The
inverse transformations are given by
vy = Jslv7 =", vy =—idvT oY), u, =" (C12)

The appropriate representation of the vector v in terms of generalized spherical
harmonics is obtained by applying, sequentially, equations (C 10)—{C12). For
example, by using equations (C 3), (C 38), (22), and the transformation rules in
equations (C 10}-(C 12), the rotation vector £2 can be written

2 = QYY(0, ) F+H2(Y7°(6, ) — Y10, 9)) 0. (C13)

We have expressed the convective velocity field #, and the seismic displacement
s, in terms of vector spherical harmonics. A general vector field can be written

Br6,6) = T I vyr) VF+1,(n)V, ¥ovy(r) X V, Y
§=0 t=—¢
> vl(r)Y:,F—I—(?)z( )0, Vit 22 ”a y*)e+( 7o) 8 Y2 ()a Y‘)
§=0 tm—p
(C 14)
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where in general the radial expansion coefficients depend on ¢ and s. Following a
procedure similar to the derivation of equation (C 13), and by using equations
(C 4)~(C 8) and equation {C 14), the components of u, (equation (23)) can be written:

uy,, =¥, Uslr) YT, (C 15)
ty, g = 775 20 Vilr) (Y, = 13Y) — ey, Qf Wilr) (Y + ¥7), (C 18)
o, 5 = — sty R Vilr) (Vi + Y ) — Iy B Wiln) (T ¥ = 1), (€ 17)
and the components of s, {equation (1)) can be written:
8, = 7 U(r) 177, (C 18}
85,0 = YV 2 V() (Y —T11™), {C 19}
Sk, = — Y QLV(r) (Y™ + Y™ {C 20}

¢y A specific example: calculation of the advection kernel
In this section, we calculate the integral

AT j PoST u, Vs, d3r
(see equation (84)) to provide an example of the application of the generalized

spherical harmonic formalism. We first construet T = Vs. This requires expressions
for the derivatives of the spherical unit vectors:

g—gz é, g—; = @Sil’la, gg = —F, % = @COSQ, g—g =0, g_g = _fSiHG—éCOSG.
(C 21)
Applying V = 70,4+ 77V, to 5,, and by using equations (C 18)-(C 21), we obtain

Tw=v UY?m= (

Ts =g 2 V(Y™ =T1™), (

Ty = —iv V(" + Y'7), (

Ty = 7'y (U2 V7™ — 1 V(Y1 = Ti™)), (
Tpe = 1+ oy [UY]" + 52 V(Y1 — Y1), (C 26

Ty = v — 2 Voo Y17 + Y7'™)], (

T, = r Yy (im cosec GUY}™ + Ll V(Y™ + Y7'™), {
Ty = r Yy (im cosec 8 [JQ) V(Y™ — Y1™)]+icot 8[Je€2 V(Y™ + 1'™)]),  (C29)
T,, = r iy (UY?™ 4 cot 6 2504 V(Y™ — ¥i™) +m cosec 8] 1582 V(¥1™ + ¥7'™)]). (C 30)
We next form, sequentially, the vector u#, - T and the scalar s§ (1, T). The factors
with (8, ¢) dependence in this expression can be reduced to products of generalized
spherical harmonics by using, if necessary, equation (C 7). We then multiply the
entire expression by 2iw, p,, and integrate over the volume of the solar model. The

integrals over the generalized spherical harmonics can be performed by using the
identities cited in §Cd. Together, these operations yield the following result:

) . Lo 8 s 1
21wrefjp0s;’-u0'vskdar= 2(1)..6547!‘}’:"}/5(“—1)7’2 Z Z ’ys(_ ‘ot )

s=0t=—s m m

x{ f RGpu[iuzm B, (r)+3vi(r) H(n) +wifr) T(r)] 7 dr}, (C 31)

1}
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where the poloidal flow kernels ﬁs(r) and ﬁs(r), and toroidal flow kernel ﬁ(r) are
given by _ ) _
R, = UUBY: +V'VBYY, (€ 32)

ol = [UU'— VU1 BG +(1+(— 1)“*””)V’VQ’QSQIQ"(Z . _é)

+[VU—QLQV'VIBEF, (C33)
= U VU BY, +[VU-QLQ, V'V B

—(1—(—1)<““+”)V’VQ‘QS.QE.QE(E ) _é) (C 34)

for ~I<m <1, —I' <m <, and where the overdot indicates the radial derivative.
The factors ¥, and .Qi are given by equations (C 5) and (C 8). The B{)* coefficients
are defined in equation (C 44). In § Db, we show how the anelastic condition may be
incorporated into this result.

(d) Integration of generalized spherical harmonics on the uwit sphere
The integral of the product of three generalized spherical harmonics is given by

j RfiYﬁ'm'(ﬁ, PI*FE™ (6, ¢) YN™(0, ¢) sin #d6 dp

A vl rov o
= — 1)y —m)
4“( 1) ( _N/ N/f N) (__ m/ m” m) - (O 35)

The Wigner 3j symbols which appear on the right hand side of equation (C 35)
are defined by Edmonds (1960) in terms of the Clebsch—Gordan coefficients
(JrmyJymy|Jy gy —my):

(;:7'11 i'fz f’js) = (= 1) (G + 1) (G my Ty g [ Sy Iy s —mg). (C 36)
The Clebsch-Gordan coefficients are defined in turn by eq. (3.6.11) of Edmonds
(1960). The integral of the product of two generalized spherical harmonics can be
obtained from equation (C 35) by noting that ¥3° = 1.

There are situations in which it is necessary to integrate the product of four or
more generalized spherical harmonics, e.g. the calculation of the general matrix
elements for magnetic fields. By combining equation (C 35) with the direct product
formula (presented below), it is possible to integrate the product of an arbitrary
number of generalized spherical harmonics. The direct product formula is used to
express the product of two generalized spherical harmonics in terms of a linear
combination of generalized spherical harmonics, and can be applied repeatedly until
one has only a product of three generalized spherical harmonics. The direct product
formula is given by

1+l

_ Lo AW i 3
YN yNamy — (_{)m-N 3 (94 ( 2 J)( 1 2 )YNm C 37
I 1y ( ) j=lll_£2|( J ) N N . . mz —m ( )

where N = N, + N, m = m, +m,, and be derived from eq. (4.3.2) of Edmonds (1960).
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The calculation of general matrix elements requires that each factor with (6, ¢)
dependence be expressed In terms of generalized spherical harmonics, e.g. the
rotation vector € in equation (22). The expression of simple low-order trigonometrie
functions in terms of generalized spherical harmonics reqguires analytical rep-
resentations of the dY;,,(0) functions. In the case of I = 1, we have from Edmonds
(1960):

dO_ =Ll+cosb) dY,=—Zssind dY = {1—cosb)
diP, = Jysind dil) = cosf diy = —Z5sinf |, (C 38)
d¥, =Hl—cosl) dY =tssinf d = Y1+cosb)

The properties of the Wigner 3j symbols we used to derive the general matrix
elements include

(jl Jo Js =(j2 Js 3'1)
m, my My m, my; M,
my, my My

=(_1)01+12+13)(j2 JiJs
Mgy My MMy

_(_1)(j1+j2+j3)(j1 Ja Je

My, My Mg

= (— 1)\rHhatds) (i: i: ;Z: (C 40)
3 2 1
= (—1)0thti 1 Ja Js (C 41)
—My T, Ty
=0, & m=my=my=0 and j+j,+j,isodd, (C 42)

#0, onlyif m +m,+m,=0,|m| <j,|my| < j,.lmy| <J;,
and i —Jal < Js: lda—dsl < d0:1da—Jul < 3a- (C 43)
(e) The BEXE coefficients
The calculation of the reduced matrix elements (see (77) and (78)} generates

frequently recurring terms, which, for notational simplicity, we have expressed in
terms of the Bj’* coefficients defined by Woodhouse (1980):

st [+ )T A
s =tz oo EEREEElev () )

There are several useful identities that the B{}* coefficients satisfy (see Woodhouse
1980, eqs (A 43) and (A 48)):

(C 44)

BOF = U+ 1)+ LI+ 1) —s(s+ 1)] BY, (C 45)
1((Z4+2(Z+4 H
By = 5{% (ZH1—2D) (X +1-21")(Z+1 —2,9)} B iie (C46)

where 2 =1'"+s+1.
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Appendix D. Calculation of the general matrix elements 87", and C7",,
(@} The general matriz element Bg;’f,’”
The general matrix element B2%",, (equation (83)) governs Coriolis coupling and

splitting. By using the representation of € in equation (C 13), we obtain

i
mm
Bn’n,z’i - Jm’m 61’1 2wref ’me

0

% oo UV F UV V) 2 dr. (D 1)

(b) The general matriz element C70"

We discuss the calculation of O, (equation (84)) in detail since the incorporation
of the anelastic condition iz complicated. The integral

Zie o jpo st (g V) dPr

for a general flow field u, (without the incorporation of the anelastic condition) was
calculated in §Ce (see (C 31)). The anelastic condition (equation (27)) constrains the
expansion coefficients of the poloidal components of the velocity field u,. The
incorporation of this constraint into the kernels £ (r) and T (r) equations (C 32) and
(C 33)) leads to a hermitian supermatrix. Our goal is to derive the kernels B, (r), H(r),
and T,(r), so that the substitutions,

R (r) >R {r), (D 2)
A (1)~ H (r), (D 3)
T(r) = T(r), (D 4)

yield the anelastic counterpart of equation (C 31). These kernels are given by
equations (D 18)—(D 20}.

The construction of these kernels will require two identities among Wigner 3j
symbols:

Identity 1 —;Q%Qf]ngeré(lJr(1)“'“*”)93!23939{,’6 f _i)
= Us(s+ 1)+ 10+ )=V T+ 1)] BEF, (D 5)

8 {
1 -2

=i+ D)+ T+ 1 —s(s+ 1)) B, (D6)

Identity 2 §1—(—1)%+2) Qs QL QL QF (ll )—%Qf, QLBY-

The proof of these identities requires the relationship

B Ja Js )

[(F2—ma} (Jo+my+1) (35 +mg) (jg—mg+ 1)]%(?%1 my+1 my—1

+[(j2+m2)(j2“m2+1)(j3_m3)(j3+m3+1)]%(i:1 m:2—1 m:i—l)

=m@+WﬁMﬁnﬁMﬁn—meG1929ﬂ, ©7)

My M, My
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which can be derived from eq. (6.2.8) in Edmonds (1960). To prove Identity 1, we
begin by setting m; = —1,m, =0, m; = 1,4, =1, 4, = 5, and j; = [ in equation (D 7)
which yields

r s 1 I s l s {
s Ol s _QI = 17 — —
9090(1 i 0)+ s 2(1 . _2) U +1)—I(+1) s(s+1)](I ) _1),
(D 8)
where we have used equations (U 8) and (C 41). Identity 1 can be obtained from

equation (D 8) by rewriting the Wigner 3j symbols in terms of the B{y)* coefficients

(equation (C 44)). To prove the second identity, we begin by using equations (C 44)
and {D 8) to obtain

W0 QLRI+ (1 (— 1)) Q2 QLOL QY (ll i ;)

={r{+1)—i0+1)—s(s+ )] B (D9

Adding the quantity 3{I-+1) B} to both sides of equation (D 9) and recognizing
that By, = B{Y~ (which follows from the symmetry properties of (C 46)), we obtain
the second identity.

Returning to equation (C 31}, we note that the term in £, (r) may be written as a
sum over two components, one symmetrie, the other antisvmmetric:

B ~ Ry . . . .
J polr)int(r) B y(r)r* dr = J rioy(ryiut(r) R(T'U+UUY B +4(V'V + VY B dr

0 9

e } . . .
+j ripo(r) i (r} (MO U—=UUYBEF +3V'V—=VV)BE  dr. (D 10)
\]

The symmetric quantity is antihermitian since it containg the factor i; the skew-
symmetric term also contains the factor i and is therefore hermitian. An integration
by parts of the symmetrie term yields

R
J " polr) i) [UU"T + UT") BEY +4V'V 4+ VI Bi 19 dr
0

14

= = |ty ek U B Y VB A (D 1)

0
Substituting the anelastic condition (27) into equation (D 11), and substituting the
resulting expression into equation (D 10) yields

R R . , , .

J " potut(r) B () rdr =J " polr) iut(r) U T~ UL BOY + (V' = V) By dr

0 L]
R
—J epo ivt(r) s(s+ 1) AVUBY + W VBY  rdr. (D 12)
0
Using equation (D 5), the kernel for horizontal poloidal flow may be rewritten

R N R
J ® poivt(r) A (r) 2 dr = J % oo it (1) [Ys(s + 1) + 11+ =T + 1) VW B
[}] 0

+U'UB®S + V' UBSF —VUBY rdr. (D 13)
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Using equation (D 6), the toroidal flow term in equation (C 31) may be replaced by

'R

[ o Zrar~ |

0 0
—WVI+ 1)+ L + 1) —s(s-++ 1)] B dr. (D 14)

Recognizing that B, = B{})” = B (which follows from the symmetry properties
of (C 46)), equation (D 14) reduces to

’ rp WMV =0T BO, + V' UBE,

'R

R, .
f m%@ﬂ@ﬂw:f

0 0

% rpg Wt (N UV + VU= U'U =V VI +1)

+U+1)—s(s+ D} BR-dr. (D 15)

We note that the right-hand sides of equations (D 12) and (D 13) contain,
respectively, the factors o} IV UB{" and of VUBY)". Since these terms sum together
in equation (C 31), they can be combined by using the identity

B =4s(s+ 1) +10+ 1) =T+ 1) BOF (D 16)

(equation (D 16) can be derived from (C 45)). Performing this operation, substituting
the resulting expression and the remaining terms in equations (D 12), (D 13), and
(D 13} into the right-hand side of equation (C 31), we obtain the final result:

, 5 ros 1
O?’:?I'I = 2(*')ret’ 47‘-")’1!”]’1( - 1)m Z 2 Vs (— m i )

§=0t=—3 m

'R
X {j " po [itk(r) B, fr) + i24(r) H(r}+wi(r) T{r)] r* dﬂ’}, (D17}
0

where the poloidal flow kernels R (r), H (r), and the toroidal flow kernel 7,(r) are
given by o o

R (ry = {UU-UD)BR +3(VV-V'V) B, (D 18)

rH (r) = U+ D)=V + ) UTYBES + (VV) BT+ VUBRT —UVBRY, (D 19)

rE(n) ={UV+VU-UU-WTII+D)+IF+ D) —ss+ D]} BR. (D 20)

We note that the toroidal kernel is unconstrained by the anelastic condition and
therefore T.(r) = T,(r).

If desired, the functions BE' BEY and BY may be reduced to expressions
involving Wigner 3j symbols of the form

Vs 1 and '+1 s+1 I+1
0 0 0 0 0 0 )’
by making use of equations (C 45) and (C 46).

Appendix E. Calculation of the general matrix elements K7%™ , R%™,,
and P7m.,
The general matrix elements K7,  Re™,  and P™™, (equations (86)(88)) are
complicated in that they contain derivatives of the elastic-gravitational per-
turbations 8x,, 8p,, and 8¢,. In the following we simplify the matrix elements by

eliminating these derivatives whenever possible. In equations (E 18)~(E 20} we
Pril. Trans. B. Soc. Lond, A (1992)
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present the matrix elements in a form suitable for evaluation by application of the
method described in Appendix C. The final result is given in equation (E 25).

{a) The general matrix element K’,’L",;TZ,I

The general matrix element K7, (equation (86)) governs modal interactions due
to aspherical perturbations in the bulk modulus. Integrating K%, by parts yields

K?r?iu JS’%(V'S?) (V-s,)d’r. (E1)

(B) The general matriz element RT™T,

n'r, 'l
The general matrix element R7™,, (equation (87)) governs modal interactions due
to agpherical perturbations in the density. By using the relations

S Po = go; (E 2)
o gy = dnlip, —2g,/r, (E 3)
8, VP =s,/r—(F/r)s} {(E4)

(where s, denotes the radial component of s, and g, is the gravitational acceleration),
the integrands of the second and fourth terms in R7™ ., can be written

S VP (Vo5y) = gosp Vs, (E 5)
st (8 V V¢o)] = s S(4nGpy—20,/1) + (go/7) (8§ 5, — 85 85 (E6

The fifth term in R ™,, can be integrated by parts to yield
fs;,-V(Spo 5. V) d¥r = —IQOSEV'sﬁd"r. (E7)

After considerable manipulation, the last term in R7?,, can be written
* 3 * o SE Sk sk 8% 3
53[5 V(0pe Vo)1 dr = | g,0pg| — 8% V-5, — 8, Vi +T_T d’r. (E8)
With the above reductions we can rewrite R7™,, in the form
R = (000 lohrst 5,52 V0(00)—dnGipoof o

+ g, (s5V 8% 5, Vo + 255 st /r)]d3r. (E9)

(¢) The general matriz element P,

The general matrix element P7. ™., (equation (88)) governs modal interactions due

to aspherical perturbations in the gravitational potential. Integrating by parts the
second term in equation (88) yields

fs,’f.'V(po 5, Vod ) dPr = pr(V's}f,) (5" V8D d%r. (E 10)
The last two terms in P7™,, can be written
(st (50 V10, V500) —py VT8@I % = [ Vpo) (0, VOB . (811
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Noting that

(57 Vo) (8, VODy) = V- (5§ py 8, VD) — (V- 5F) py 81, VOB, —py s V (5, VBD,),
(E 12)
the right-hand side of equation (E 11} can be integrated by parts:

[st-105p5, V80100 == [ 7-5t1 5,V oy - [pust- Vs Voo . 13

With these reductions, P, can be written

P, = fpo V-5, (5% - VoD ) — sk - V(s VO@,)} d®r. (K 14)
(d) The symmelrization of Vi1,
To allow comparison of the foregoing results with the corresponding results of

Woodhouse (1980), we express Vi, = Kpm, +Prm, +R™™, (see (85)) is as

symmetric a form as possible. This can be accomplished by noting that 2, is a
hermitian operator) i.e.

sp L o(s,) dPr = |5, L (sE)dr. (E 15)

From equation (K 15) it follows that

S5 (s, dPr = %[ sk Lo (s, dPr+ s,c-;:fo(s;‘,)d?’r}, (E 186)

Js;‘,-ﬁ_‘fe(sk) d*r = —Zl{jsﬁ : 83?(,(516)d3r+J‘s,‘c 0L, (s%) dsr}. (B 1T)

In §§Ea, b we evaluated [ s}.-8%(s,)d®r. Thus the last term in the right-hand side
of equation (E 17) can be obtained by switching the prime and unprimed variables
In equations (K 1), (E 9), and (E 14). Performing this operation, and summing terms
according to the prescription in equation (E 17), we obtain

Ky, =— f 8xy(V+5E) (V-5,)d°r, (E 18)

Ry = J.Spo[w:%ef St 8y — S5 VOP(s,) — 5, VBA(s) — 4nGip, 57 s,
+ 3V SE STV s, — 5, Vsl — 55 Vs, + 457 s /¢) A7, (E 19)
. 1
Pl = §jpo [(V-5;) 8% VoD, + (V- 5k) 5, VED,

— 55 V(s VoD —s,-V(sF V3D,)]d®. (K 20)

We have added the term —j[sy-V3¢(s,)+s, Vid(s¥)] to R, Otherwise, the
gravitational potential energy due to self-gravitation is not correctly modelled (see
the discussion below eq. (2.2) in Luh (1974)). Finally, to emphasize the distinct
contributions 3¢, and 8y, to P™,, we decompose it in the form

pmm P(nl)nfieg? + Piyymm (E 21)

n'n, 'l T nn, 'l
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where

1
Pgal)nmty? = 2jp0[(V'Sk)S§'V6¢D+ (V-55) 8, Vg,

—5%-V(s, Vo¢,)—s, Vst -Vdg,)|d%, (E22)

P — f Pol(V-83) 55 Vit (V- 53) 53 Vi,

— 85 V(s Vi) — 8 Vst Vi) dr. (B 23)

We may compare the matrix elements obtained here with those of Woodhouse &
Dahlen (1978) for the case of degenerate perturbation theory by setting s, = s,.
Doing so, we find that Bj.", and P, Rp™ and K7™, and PU)™™ agree,
respectively, with eqn (68), (69), and (71) of Woodhouse & Dahlen (1978).
Comparison of the matrix elements By." ., Py, R2™,.,, and K77, with the first
three integrals in eq. (A 1) of Woodhouse (1980) shows complete agreement for the

case of quasi-degenerate perturbation theory.

) The final form of VIUr,,

It remains to calculate Vﬁn 7 1sing the representation of s, in equation (1) and of
Oky, 0p,, and d¢h, in equations (35)—(37). The integrals in equations (E 18), (E 19}, and
(E 20) can be calculated by using the method deseribed in Appendix C. Alternatively,
one may refer to Woodhouse (1980) where the same integrals have heen calculated.
Ultimately, one obtains integrals over dk,, 8p,, 8¢, and 8¢, By using the relation

0*Bi(r) | 20845(r) (S+1

o oo

)8t (r) = 4n38pt(r) (E 24)

(which follows from Poisson’s equation) and by performing several integrations by
parts, it is possible to transform the integrals over 8¢, and 8¢, into an integral over
8p,. We find V™., can be written

R

f14
Vitan = B j CB() 1 Qe+ 30%,,0,0, [3%' =i+ l)f

|} 0

¢ po Clryr? dr]

2 8 ros 1
Ay, v (-1 X X 78( , )
§=0f=—5

-—m t m

) J‘RO [8xi(r) K y(r) + 8p(r) R (r)]#*dr, (K 25)

0

where ET7. E(r), Clr), K (r), and B®(r} are defined in §6¢.
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