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1 INTRODUCTION

SUMMARY

We present the results of a synthetic investigation designed to characterize the
effects of long-wavelength elastic and anelastic models on the amplitudes and phases
of long-period normal mode multiplets and Rayleigh wavepackets, Normal mode
synthetics are created for recently constructed long-wavelength elastic and anelastic
aspherical models of the Earth’s upper mantle, using both the multiplet self-coupling
approximation and the more accurate +35 multiplet-multiplet coupling of the
Galerkin method. Amplitude and phase measurements of the normal mode spectral
peaks between 2 and 9mHz and of the first eight Rayleigh wavepackets for 331
source-receiver pairs are compiled for each type of synthetic. The effects of
anelastic and elastic structures are compared quantitatively with one another and
with the predictions of zeroth order (in 1//) asymptotic normal mode theory and
linearized ray theory (LRT), and difficulties and advantages of applying these
theoretical simplifications are identified and discussed.

Although anelastic structures have only a minor effect on phases, long-wavelength
models of anelastic and elastic structure each perturb amplitude measurements, with
anelasticity accounting for up to ~1/3 of the normal mode perturbations and up to
~1/2 of the surface wave amplitude effect. Zeroth-order asymptotic theory and
LRT predict that elastic and anelastic amplitude effects should qualitatively differ
from one another, and thus should be separable in the data. While synthetics display
qualitative agreement with the predictions of the approximations, for both normal
mode spectra and surface wave measurements significant quantitative departures
from zeroth-order asymptotic theory and LRT are observed. The part of the
synthetic elastic amplitude signal not forecast by the approximate theories obscures
the effects of aspherical anelasticity, particularly for normal modes, and can severely
bias estimates of anelastic structure based solely on the approximations.

In contrast, if an a priori model of aspherical elastic structure is assumed, the
transfer functions that map amplitude anomalies from the elastic model to those for
a model which includes anclastic asphericity are much more accurately forecast by
zeroth-order asymptotic theory and LRT. Asymptotic theory accounts for over 85
per cent of the variance of such transfer functions for normal modes, and LRT
predicts 67 per cent of the variance of surface wave transfer functions. Therefore,
with the assumption of a priori elastic models, or in joint inversions of amplitude
and phase data for elastic and anelastic structure, the approximations considered
should prove useful for estimating models of aspherical attenuation.

Key words: aspherical structure, asymptotic approximations, Q, ray theory, synthe-
tic seismograms.

Durek, Ritzwoller & Woodhouse 1993) to be added to
earlier long-wavelength elastic models (e.g. Woodhouse &

In recent years, the first models of long-wavelength Dziewonski 1984; Tanimoto 1986; Smith & Masters 1989;
anelasticity in the Earth’s upper mantle have emerged Romanowicz 1991). Renewed theoretical interest in the
(Ritzwoller, Durek & Woodhouse 1989; Romanowicz 1990; seismic effects of anelasticity has also occurred in the past
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few years (Tromp & Dahlen 1990; Lognonné 1991), This
recent progress motivates our investigation, which seeks to
quantify the relative effects of long-wavelength elastic and
anelastic structures in long-period seismic data, in order to
provide a basis for judging the viability of employing certain
approximate mathematical methods in the development of
future models.

It is well known that long-period seismic amplitude
anomalies result from elastic as well as anelastic aspherical
structures (e.g. Jobert & Roult 1976; Davis 1985; Park 1986;
Woodhouse & Wong 1986; Pollitz, Park & Dahlen 1987).
Durek et al. (1993) discussed at length bow long-wavelength
elastic asphericities btas estimated anelastic models, under
certain assumptions. They addressed this problem by using
an elastic reference model to reduce the elastic amplitude
contamination, but argued that eventually a simultaneous
inversion for elastic and anelastic structures would be
necessary. Even simultaneous inversions would need to be
informed as to the relative effects of elastic and anelastic
structures in order to resolve ambiguities resulting from the
analysis of data that are affected by elastic and anelastic
structures similarly. However, though studies have been
published that quantify the phase signal in long-period
seismic data resulting from long-wavelength elastic structure
(e.g. Davis & Henson 1986), we are unaware of any similar
study that concentrates on the amplitudes of the
long-wavelength models, elastic or anelastic.

The studies that produced the anelastic models, cited
above, analysed amplitude anomalies of multiply orbiting
Rayleigh wavepackets and were each based on a number of
simplifying assumptions which were used to extract the
anelastic amplitude signal from the larger elastic signal.
These assumptions, in turn, were derived from linearized or
asymptotic approximations in the theoretical representation
of normal mode and surface wave seismograms. We wish to
describe the effects and limitations of these approximations
and to display more concretely the particular contributions
of anelasticity. Just as the description of the lowest and
first-order asymptotic effects of elastic structure permitted
Romanowicz, Roult & Kohl (1987) to isolate zeroth-order
effects in phase data, improved understanding of the
anelastic signal may indicate means of isolating particular
information about attenuative structure in the data,
advancing the work of Romanowicz (1990) and Durek ez al.
{1993).

There are, therefore, three main purposes to this study.

(1) To quantify the relative size of the long-period signal
of long-wavelength aspherical anelastic and elastic models
with a particular emphasis on amplitudes.

(2) An attempt to quantify the degree to which linearized
and asympiotic approximations are successful in predicting
the characteristics of the anelastic signal, since these
methods speed inversion.

(3) To interpret our results in terms of their implications
for the development of future inversions for general
aspherical Earth structure.

2 SYNTHETIC SEISMOGRAMS AND
MODELS

2.1 Methods

To construct synthetics wsing sums of coupled normal
modes, we start with a set of vector eigenfunctions of

oscillation, s,(r), for a spherical, non-rotating, elastic,
isotropic (SNRI) earth model. The index K represents the
radial, angular, and azimuthal indices (n, I, m) of a spherical
harmonic eigenfunction and r is the position vector. The
coupled normal mode formulism can then be simply stated
as follows.

In the spectral neighbourhood of fiducial frequency w,,
the displacement field d(t) at position r due to an event at r,
is given by (e.g. Woodhouse & Girnius 1982):

d(r,r) =R* - exp (iZr) - S exp (iwyt). (1)

The receiver vector R is composed of the projections on to
the receiver’s polarization axis of the eigenfunctions sg(r)
evaluated at position r, while the source vector 8§ comprises
the moment tensor contracted with the complex conjugate
of the strain tensors of the basis functions evaluated at r,.
Ignoring boundary contributions, the functional dependence
on aspherical structure is contained in the general matrix Z,
the elements of which describe coupling between pairs of
basis functions and can be written as (Woodhouse 1980):

Z:lnﬂ”’gl;’ = [(wzl - wﬁ)ann' + C:r"n'l](sil’émm‘
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where w,, is the degenerate frequency of each multiplet,
Chy represents terms in the Coriolis force and centripetal
acceleration, y,., =[(20 + 120" + 1)(2s + 1)/(47)]'?, and
the Wigner 3-j symbols multiply the interaction or structure
coefficients which are linearly related to aspherical structure:

Ly = f om(r) - K07 3)

The model vector is dm = (x%, Su., pl, q.) where s and ¢
are the spherical harmonic degree and order of the
aspherical structure. The kernel K is also a vector, with
components corresponding to those of ém, and is a function
of the SNRI eigenvectors.

The general matrix Z is diagonalized to yield the
perturbed eigenfrequencies and eigenfunctions of the
aspherical model:

Z-U.Q-U". (4)

The elements of U are the coefficients in the expansion of
the perturbed eigenfunctions in the basis of SNRI
eigenfunctions, and the diagonal components of € are the
frequency perturbations that give the new eigenfrequencies.
The displacement can be rewritten

dir, 1) = R* - exp (ifk) - F exp (iw,1), (5)

where #*=R*-U and ¥ =U""'-8. For our purposes the
infinite dimension of the general matrix is reduced to a
manageable size by assuming that the modes of each
degenerate SNRI multiplet couple only to singlets in that
multiplet and to those of its nearest neighbours along the
fundamental (n=0) mode branch. As described by Park
(1986), we find the perturbed modes of a ‘target’ multiplet
by constructing the coupling matrix that includes the P (a
small integer) multiplets on either side of the target. We
solve the eigenvalue problem for the central block of this
matrix to retrieve the perturbed modes and frequencies of
the target. This process is repeated for each multiplet along



a section of the fundamental branch to preduce the modes
summed for a +P coupled synthetic.

Our own tests as well as several other studies {e.g. Park
1986; Masters 1989; Um, Dahlen & Park 1991) have shown
that, for long-wavelength upper mantle models, coupling to
modes beyond t35 alters spectra only slightly compared with
the effects of coupling within that limit. We have, therefore,
chosen to construct x5 coupled synthetics for this
experiment. Even so, the computation time required for the
diagonalization of matrices corresponding to modes with
frequencies greater than 9mHz has proven to be
prohibitive. Our limited range of frequencies is sufficient to
display important characteristics of the signal of aspherical
anelasticity in surface waves, including significant deviations
from the predictions of asymptotic approximations and
linearized ray theory. However, in further experiments it
should be possible to extend the frequency range upward
using the more efficient subspace projection technique
(Dahlen 1987; Park 1987), as well as asymptotic methods
based on the work of Romanowicz (1987) and Snieder
{1986).

2.2 Models

The chosen spherically symmetrical reference model is the
Preliminary Reference Earth Model (PREM} of Dziewonski
& Anderson (1981). The aspherical elastic model is a
hybrid. We have combined the lower mantle v, model
LO2.56 (Dziewonski 1984}, the upper mantle v, model for
degrees 1-8 given by MB84A (Woodhouse & Dziewonski
1984), and the degree 9-12 part of MPAI12.4A (Wong
1989). (The degree 1-8 part of Wong's model does not
differ greatly from M84A, and the combination is used for
. historical reasons only.) We translate all models into the
form & Inw,(r, 8, ¢), employing the lower mantle scaling
relation d(inv,)/d(lnv,) = 2.0.

For the model of aspherical anelasticity, we draw on the
results of Durek et al. (1993), who inverted their estimated
surface wave attenuation coefficients for a 3-D attenuation
model using the radially dependent proportionality
coefficient af{r), which maps aspherical velocity perturba-
tions into perturbations in intrinsic anelasticity ¢ (=1/Q)
according to:

5q,(r, 6, p)=a(r)dInv,(r, 6, ¢). (6)

This assumption reflects the likelihood that variations in
attenuation are dominantly controlled by temperature,
which has larger gradients in the radial than in the lateral
directions. The resulting function a(r) (Fig. 1a) displays a
source region for anelastic heterogeneity located in and just
below the low-velocity zone of PREM, consistent with the
postulate that material in this zone is near, but below, the
solidus temperature (Sato, Sacks, & Murase 1989a; Sato ef
al. 1989b). The scale and geometry of the lateral variations
in the attenuation model at the base of the low-velocity zone
are displayed in Fig. 1(b).

2.3 Synthetic data sets

We consider four different types of synthetic seismograms,
which we define according to the earth model and normal
mode coupling scheme used to construct them. The earth
models we consider are composed of PREM alone or
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PREM combined with the aspherical elastic and/or anelastic
models described above (four possible combinations). The
coupling schemes are self-coupling or £5 coupling. Of the
seven types of synthetics that can be constructed with these
models and coupling schemes, we select for this
investigation the following: PREM modes perturbed only by
rotation and ellipticity; PREM and the aspherical elastic
model under self-coupling; PREM and the aspherical elastic
model under +5 coupling; and PREM, the aspherical
elastic, and the aspherical anelastic models under 435
coupling. Hereafter, we will refer to these synthetics
respectively as RH (rotating hydrostatic), elastic self, elastic
+5, and anelastic £5 synthetics. Note that ‘anelastic £5°
synthetics include both elastic and anelastic aspherical
carth models. Consequently, this sequence, summarized in
Table 1, is presented in order of increasingly realistic
approximations to seismograms of a complete earth model.

For each type of synthetic seismogram, we create a set of
vertical component synthetics for 331 source—receiver pairs,
which have been selected in such a way that great circle
poles are well distributed across the Earth’s surface (Fig. 2).
The 24 events are from 1977 through 1984, with locations
and moment tensors from the Harvard CMT catalogues.
The receivers are IDA and GDSN stations that were in
place during that period.

We do not consider here the additional, undoubtedly
important, effects that smaller scale structures would have
on the low-frequency spectrum. We further restrict this
investigation to an analysis of Rayleigh waves. The eftects of
toroidal-toroidal coupling are seen only in Love waves,
while spheroidal-toroidal coupling is primarily attributable
to the Earth’s rotation and anisotropy (Park & Yu 1992; Yu
& Park 1993), which are beyond the scope of this study.
Thus, our concentration on anelasticity and Rayleigh waves
necessitates only the construction of coupled-mode synthet-
ics for fundamentat (n = 0) spheroidal modes.

3 PERTURBATIONS IN FUNDAMENTAL
MODE SPECTRA

3.1 Measurements

Amplitude and phase spectra are computed by taking the
Fourier transform of the first 15 hr of the Hanning windowed
synthetic time series. Motivated by the predictions of
asymptotic theory, summmarized by eq. (A19), we measure
the amplitude of multiplets at their peaks, and phases at the
degenerate frequencies of the unperturbed multiplets. For
each type of synthetic considered, and for each of the 331
source—receiver pairs selected, these measurements are
made on all of the multiplets in the range I =20 to / = 85.

3.2 Observations

We consider the amplitude and phase changes that occur as
we switch from one type of synthetic method and/or model
to the next, and compare, in succession, elastic self to RH,
elastic +5 to elastic self, and anelastic £5 to elastic £5. In
each case we record, for every multiplet of the synthetics for
each path, the phase shift ¢" — ¢ and the relative amplitude
shift 64/A, where A’ = A+ 6A, and primes indicate the
perturbed values. Measurements near nodes are ignored in
this process. Though such measurements provide unique
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Figmre 1. (a) The propoicnality constant air) between relsiive perurbations of shear velooiy and anelasticaty in the upper mangle (eq. 1], as
estimated by Durek er al. {1993}, Mote thai the negative peak s ot the base of 1he low-svelocity zone ot 20 km depth. (b) The Interal  model
at M1 km implied by eq. (6}, the model of afr) in (a), and the aspherical ebislic model MEAA. The shading scake at the bottom of the fgure
indecubes £} valwes, while ibe contour Bnes are those of 9 = ", Mot (hal thers are high @ anomalies under the comtinesial shiclds and the
ald Pacfic, and low () regions beneath the East African rift system o ihe Cariblbsean, among ather places,




Table 1. Identification of synthetic seismograms according to the
earth models and normal mode coupling schemes employed. PREM
is the Preliminary Reference Earth Model (Dziewonski & Anderson
1981); the aspherical elastic model is a combination of LO2.56
(Dziewonski 1984), MB4A (Woodhouse & Dziewonski 1984), and
MPA12.4A (Wong 1989); the anelastic model is derived, using eq.
(1), from the model of a(r) shown in Fig. 1 and the aspherical
elastic model. Self-coupling implies that normal modes are allowed
to couple only to other modes of the same harmonic degree (same
degenerate multiplet), while +5 coupling allows both self-coupling
and coupling to modes of the 10 nearest neighbouring multiplets on
the fundamental mode branch.

Earth model

synthetic designation coupling type

RH PREM self
elastic self PREM + asph. elas. self
elastic 5 PREM + asph. elas. +5
anelastic +5 PREM + asph. elas. +5

+ asph. anel.

and important information, peaks with near zero amplitude
in the RH model spectra skew the amplitude ratio statistics
that we focus on here.

Figure 3 displays the straight average of the absolute
value of amplitude and phase perturbations, for the set of
331 source-receiver pairs. The amplitudes of the elastic
self-coupling synthetics are perturbed from those of the RH
synthetics by about 7 per cent throughout the range of
harmonic degrees displayed. These perturbations are
attributable to phase interference among singlets in each
multiplet, a second-order phenomenon that is essentially
independent of harmonic degree in the frequency range
examined here.

The inclusion of coupling terms produces additional
perturbations that increase in magnitude from 5 per cent
at I =20 to 20 per cent at / =85. Elastic coupling is, then,
the strongest contributor to the amplitude signal, but the
amplitude shift produced by our long-wavelength anelastic
model relative to the elastic +5 synthetics becomes
increasingly significant with greater harmonic degree. For
the highest frequency multiplets considered, the relative
amplitude perturbation due to anelasticity is nearly 10 per
cent, which is more than one-third of the total average
perturbation due to long-wavelength structure at those
frequencies.

In contrast, the average phase difference between
multiplets of the anelastic £5 and elastic £35 synthetics is at
most 2 degrees, while the difference in phases between the
RH synthetics and elastic self-coupling synthetics ranges
from 25 to 60 degrees, and the difference between the- elastic
self and elastic £5 phases is up to 20 degrees. The strongest
phase signal from our earth model results, therefore, from
elasticity through self-coupling, while the phase effect of
long-wavelength anelastic structure is negligible, being near
the noise level of real data.

In order to gain a better understanding of the nature of
the amplitude signal of anelastic structure in normal mode
amplitudes, we examime in greater detail a pair of synthetic
seismograms corresponding to different ranges (A) along
great circle paths, which sample predominantly high or low
(2 regions of the anelastic model. The paths selected for this
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inspection are shown in Fig. 4, and Figs 5 and 6 display
portions of synthetic spectra for the high and low ( paths,
respectively.

Figures 5(a) and 6(a} show the spectra for the elastic self
and elastic +5 synthetics. The amplitude perturbations of
the +3 synthetic relative to the corresponding self-coupling
synthetic for the high Q path increase in magnitude with
harmonic degree. Both spectra and the pattern of
perturbations in each are all dominated by an oscillating
function of [ with a period very near 2. For the low Q path
similar effects are seen, but in this case the dominant
oscillating function describing the perturbations has a period
slightly greater than 2.

These effects are better illustrated by plotting the transfer
function

Tt 2s() = AGDO/AGDW), ™

which maps normal mode (NM) amplitudes of elastic
self-coupling synthetics to elastic +5 amplitudes. Toae, s
for the low @ path is plotted in Fig. 7(a). Any smooth trend
in the perturbations is clearly dominated by the oscillating
function. The periods observed here correspond to those
given by the function tan(kA —m/4), with k=1+1/2,
derived in Davis & Henson (1986) and Romanowicz &
Roult (1986), among others, and appearing in Appendix A.
This function gives {-periods of 2.05 and 1.89 for the A = 88°
and A =95 paths, rvespectively. The period 1.89 gets

" mapped to the observed period of 2.12 by the Nyquist effect

of once-per-multiplet sampling.

Figs 5(b) and 6(b) display the spectra of the elastic +5
and anelastic +35 synthetics. The effect of the long-
wavelength attenuation model is primarily to increase all
modal amplitudes for the high @ path and decrease them all
for the low @ path. The magnitude of this anelastic
amplitude shift increases with harmonic degree, and there
are periodic fluctuations similar to, but significantly smaller
than, those observed in the upper plots for the effect of
elastic coupling.

We consider next the transfer function
TN = AZINIAGD D), (8

anel

which characterizes the effect of adding aspherical
anelasticity to the aspherical elastic earth model. The
transfer functions for the high and low Q paths are shown as
dotted lines in Fig. 7(b). In contrast with Tooy, .5, these
functions are dominated by trends that vary smoothly with /,
on which are superimposed smaller scale oscillations of
roughly constant periodicity. This result is closely analogous
to the elastic frequency perturbations described by Davis &
Henson (1986).

Also plotted in Fig. 7(b) are lines that are derived from
the term of order zero in (1/1} of the asymptotic theory
described in Appendix A (eq. A20). The analytic expression
for these lines is approximately (eq. A24})

T =142, ©)
17

which is derived by generalizing the equations of
Romanowicz (1987) to include aspherical attenuative
structure. Q, is the quality factor of the multiplet for
PREM. 80, is the average of aspherical Q along a great
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(a)

(b}

Figure 2, (a) The 24 events from 1977 to 1984 (circles) and 49 IDA and GDSN receivers (triangles) used for this synthetic investigation. (b)
Great circle poles for the 331 source—receiver paths of the synthetics created. Note that great circle poles are fairly well distributed across the

Earth’s surface.

circle linking source and receiver, depth sampled according
to the sensitivity kernel of the specified multiplet. To the
extent that asymptotic theory is correct, eq. {9), with
corrections to account for the effects of tapering the time
series, should match the smooth trend of the measured
amplitude perturbations. Mismatches, such as those visible
in Fig. 7(b), are attributable to the inaccuracy of the
short-time approximations of asymptotic theory when
frequency perturbations are large. We postpone to Section
3.3 discussion of the predictions of the asymptotic theory
and the degree to which the observations for this model
agree with those predictions.

To illustrate further the general nature of Toy,, transfer
functions for the suite the paths shown in Fig. 8 have been
plotted in Fig. 9. Again we see that the large-scale trends

are smoothly varying and appear to be fairly simple. There
are visible periodic oscillations in these trends, and careful
inspection reveals that the periodicity for each path
corresponds to that of tan (kA — x/4). We display the plots
in order of increasing path-averaged Q perturbation, 60,
and it is evident that for this suite of paths the approximate
slope of the transfer functions is positively correlated with
80, as suggested by eq. (9).

3.3 Discussion
3.3.1 Theoretical expectations

A generalization of the results of Romanowicz (1987) to
include anelasticity may be found in Appendix Al. The
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Figure 3. (a) Fractional amplitude differences as functions of harmonic degree (/). Plotted for each harmonic degree is the average of the
magnitude of (8A4/A) that results from a comparison of multiplet peak amplitudes. A separate trend is displayed for each of three types of
synthetic ratios (as defined in the text): elastic self to RH (open circles); elastic +5 to elastic self (solid circles); anelastic +5 to elastic +5
(stars). (b) Average phase differences for the same synthetic pairs represented in (a). Phases are measured at the degenerate multiplet peak
frequencies of the SNRI model synthetics.

relevant results of this asymptotic theory are summarized by the case of an isotropic source in an earth model with both
expressions for the amplitude, phase and frequency elastic and anelastic asphericities is
perturbations caused by aspherical structure. These
equations are correct to the first order in (1//) and all are s(t, A)= Re [E a, (Ao + 6A,) exp [—(ay + Sa)t]
based on the short-time approximation, AT «1, for a k
frequency shift A and a time series of length T.
The asymptotic equation for the perturbed time series in X exp {i[(@x + At + wzncl]}]’ (10)
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Figure 4. Two complementary paths, plottod on the (@ model ot depih 200 km, The high ¢ path (8¢ = L6 Tor | = 51 pases through the
Asian shield and the old Pacific, and is tangent 10 sructural conours in Motk Africe, where gradients are large, The law 0 path (8¢ = —7.92
for ! = 5 passes throwgh ibe East Africen rill and the Caribbean, snd is roughly orthogonal so condours almost everywhere, The high £ path
i fiw \be Iewdinn Ocean event of 19E3 November 3 recorded ai the South Karori, Now Zealosd GIVSN staiion (SNZO, The low path is fog
the South Adlamtic ridge event of 1951 June T reconded i the Ankara, Turkey GOSN siation | ANT)

where ay = e /20, I8 the atrenuation coefficent of the
unperturbed multipbet with wavenumber & The predicied
frequency shifi produced by aspherical elastic structure s
given by

1]
.-\,,:ﬁ.'a‘-,+2—:mn.1.- (11}
Loterally wvarying clostic  struciure  also  changes  the

amplitudes of multiplets, and the amplitude periurbation
relative to the amplitudes produced by the RH model s

B4, ah; — 0, ecotA-—
o ™0 B A 4 B e h ). (02

L is the proup velocity at frequency wy, and 4, = £A = g4
for mange A, &6y is the average, along the source-receiver
great circle path, of the local frequency dor 8, ¢} defined by
Woodhouse & Cimies (19825, This local fregquency is a
radial integral of the wvarigtions @ elastic  stroctural
parameters introduced by an aspherical model. s
similarly the great circle average of [N @, @), which depends
on the gradient of dmw in the direction tramsverse 1o the great
circle. dw and £, stand for the differences between great
circle amd monor arc averages of & and 0. 88, and O
result from the setf-coupling terms of the general matrix Z,
while dw and 0, come from coupling between different
multiplets.

To first-order in (1/{}, asymptotic theory predicts tiat the
elastic phase shift results from self-coupling alone, and that

the amplifude perturbations coused by elastic asphericity are
produced entirely by coupling between multiplets, sccording
o eg. (12). Much of this study will focus on amplitude
measurements, and we see that the stromgest part of the
amplitude signal of aspherical elastic structure & expected tn
tuke the form of o perodic function of I, due primarily to
the zeradh-order term i eq. (12}, though the contribution of
the oscillating first-order lerm of the same penodicity can be
strong for seme pathe. Departures from simple periodicity
due Io the smooth first-order gradient term in eq. {12) are
expected to be significant, because bending of surface waves
m the same frequency range, attnbutable to gradicnts of
elastic  structure, hias  been  observed.  Higher  order
usymptotic cffects may abso be observable in smthetic
ampltude dota, Additiopully, pon-asymptotic amplitude
effects may be significant for paths with lirge average local
frequency, &, giving frequency perturbations, A, large
enough to vielate the short-time approximation for the 15 hr
time serses of this experiment. For example, at /=75 the
frequency perturbation for the high @ path s 0023 mHz,
for which AT =5 when T =1hr. In this case, then, the
assumption AT <1 s valid only for time series well less
than 1 hr in length,

Because laterally varying attenuative structures produce
perturbations to the imagmary part of the local frequency,
the predictions of the asymptotic theory for the amplitsde
und phase signals of anelastic asphericity match, respec-
tively, the expressions for the frequency and amplitude
perfurbotions due 0 elastic structure, The atlenuation
eoefficient of a multiplet is perturbed, again (o the first order
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({) for the low Q path. Note that amplitudes are changed by more
than a factor of 4 in some cases. (b) Transfer functions TH™, (/). For comparison, the theoretical lines for zeroth-order (in 1/{) asymptotic
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Figure 8, Elpht spmroe-receiver puths of varymg math-averaged ) perturbation, A1, for the Japanese evemt of 1982 July 2%, Suatwons selected
aret (1) BOCAD, (1) KIP, (1) NNA, (4) ANMO, (5] NWAQ, (6] CTAD. (7] SNZO and (8] GRFO. The path of highest A m (5], which
passes Arough the Canadion whichkd and the high O anomaly off the Antanctic coast, The paili of lowsst (F & (), which samples the low L
features of Central and South America. Ao of nole s paths (6), (7] asd (5), which ane &) tangeat 1o the kw @ structures i the South
Pacilic, snd thus have Bigh overuge grodients lmnsverse (o ke great carches.

i {17, by

d
Br, = O, + 1—;1ar| F {13)
This corresponds 1o equation (11} for  elastic  phase
perturbations, &, and d, are path integrals of the
imaginary parts of the complex structure terms

fig = fag iy i14]
o, = 0, + id;. {15)

Finally, the phase shift brought about by anclastic
perurbations may be approximated by
wﬂ_-%[-ﬁ tan A, + f—?"—"a-}hm wec” :u_]. {16}
The overbars here have the same meaning as in eq. (12).
For anelasticity, zeroth- and first-order phase shifts result
solely from multiplet-multiplet coupling, and the amplitade
signal is a scif-coupling effect. The zeroth-order anelastic
amplitude efect is the smooth trend in | given by eg. (%)
which i derived from the fist ferm in eg. (13). The
first-order correction o this asymptotic prediction 5 an
oscillating function of [ due to gracdients. This function has
the same period a8 the oscillating parts of the elastic
frequency and amplitude shifts (eqs 11 and 12}, Higher

order asymptotic effects are expected o be less significant
for the mnelastic cse than for the spnal of elasbc
amphericity, becamse anclastic structure i relatively small,
but non-asymptotic effects may still be significant  fos
synihetics that violate the short-time approximition.

The equations for a non-isofropic source are nod discusied
here, bt miy be shown o have the some esseniial
characteristics, as indicated by Romamowice [ 1957,

I32 Quualivares mmalys

Crhservations of the elostic phase shift are familiar from such
stucies a3 Davis & Henson (1986), Romanowice & Rould
{1986} and Romapowice {1987}, Our obscrvations of these
effects in coupled normal mode synihetics closely resemble
ithe data described and discussed by those authors. We need
only emphasize that the phase signal of elostic self-coupling
deminates the phase spectra, 4 ilustrated in Fig, 3(b}.

The functions T ... exemplified by Fig. Tia),
charscterize our synlhete observations of the normal mode
pemplitude signnl due fo elaste coupling of multiplets, These
fumctions clearly display strong oscillutions st the expected
perinds, The amplitudes of the oscillations are seen to be, in
general, considerably larger than the magnitude of anelastic
amiplitude effects measired by T:ﬂ.‘,

The periodic perurbiation caused by cros-couphing 15 nid
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the only significant part of the elastic amplitude signal.
Fitting a linear or quadratic pelynomial in [ to the transfer
functions for this signal,

TRi-e() = AZP (O Aru(D), (17)

often reveals a smooth function of /, as seen in by Fig.
10(a). As demonstrated by Fig. 10, the amplitude
perturbations represented by such smooth trends usually
have magnitudes of the same order as the expected signal of
anelastic structure. Such fits are not highly robust, implying
that the removal of the periodic signal, a discretely
undersampled tangent function, is non-trivial. The offsets
are persistent, however, suggesting that they result from
either the slowly varying first-order gradient term of eq.
(12), higher order asymptotic effects, or non-asymptotic
behaviour. Because significant smooth trends are observed
for paths with small &, it is reasonable to attribute them
primarily to the first-order gradient effect.

Our observations of THN, | exemplified by Figs 7(b) and 9,
show that these transfer functions do, for the most part,
take the form of the zeroth-order asymptotic trend,
perturbed by an oscillating term. The oscillations dominate
the signal for paths with small average (2 perturbation, 50.
It is also evident that, although the observed transfer
functions are well fit by simple curves, the theoretical
smooth transfer function does not fit the measured trend
optimally. This is better illustrated in Fig. 10(b). Since such
discrepancy is most often observed for paths of highest or
lowest 8¢, it is probable that these observations are
accounted for by violation of the short-time approximation.

Finally, Figs 7(b) and 9 do not show points corresponding
to nodes in the RH model spectra. As explained in
Appendix A, at such nodes eq. (13) is replaced by

5 w(@ cot A
K \okr sk

6&) tan i,. (18)

" This expression lacks the smooth & term and produces a
separate trend of ratio points centred on AL"V/AL) = 1.

3.3.3 Suatistical analysis

We use variance reduction statistics to quantify the success
of asymptotic theory in predicting Th%.. The variance

="

reductions displayed in Table 2 are given by

El( 3&1&1 _ ﬁ::'leory)Z
i,

—=1- , 19
v I (g )

where 8 is TN, (!) for path i. The data functions are either

ratios of the measured synthetic peak amplitudes, or
mathematically smoothed representations of the measured
functions. The theoretical functions are given by eqs (A23)
and (A27).

Simply subtracting the theoretical functions from the data
reduces the variance of amplitude ratios by 55 per cent.
Because the majority of our paths have small average Q
anomalies, in which case the oscillating first-order term of
eq- (13) dominates, this number is not the most relevant
measure of how accurately the zeroth-order theory forecasts
trends in the synthetic data. To provide a more informative
evaluation of the theory, we must extract smooth trends
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Table 2. Variance reductions produced by removing the anelas-
tic amplitude effect forecast by asymptotic theory from the
measured amplitude perturbations in synthetic normal mode
multiplets, and from polynomial best fits to the measurements.
The transfer function Th™, plotted as a function of harmonic
degree 1, isolates the effect of the anelastic component of the
model. The theoretical trends are given by eq. (A28) and can be
seen, in the case of isolated anelastic signal, to account for much
of the observed variance, especially for the smoothed trends.

data TNM variance reduction
measured 55%
best linear fit 88%
best quadratic fit 86%

from the data. This is accomplished by fitting simple
polynomials to the measured transfer functions. The
zeroth-order asymptotics reduce the variance of best linear
fits by 88 per cent. For quadratic fits the result is a virtually
identical 86 per cent. Though polynomial fits are almost
certainly not the best smoothing routines for these data,
these variance reductions indicate that the zeroth-order
asymptotic theory predicts the smooth component of the
measured transfer functions quite well.

Similar variance analysis also indicates that it is virtually
impossible to identify either real or theoretical T0'™, in the
overall amplitude signal from aspherical structure. One per
cent or less of the variance of the smoothed transfer
functions

TRb=a() = AGI D)/ Arn() (20)
is reduced by removing TNM,. Apparently, the smooth

trends in amplitude anomalies due to elastic structure,
together with the difficulty in robustly fitting the strong
periodic component of TRpy.., completely obscure the
anelastic transfer functions.

3.3.4 Summary and implications

These observations and statistics are evidence that
separating the signals of elastic and anelastic asphericity in
normal mode spectrum 15 not trivial, and, in particular, is
not accomplished simply by removal of the tan A, pattern in
the perturbed amplitudes. The zeroth-order periodic
component of TTO¢ , 5 directly masks the first-order part of
the anclastic signal, which has the same period. In addition,
the strong oscillations of Th7, . 5 are difficult to eliminate in
a robust manner, especially for a narrow spectral range.
Even after smoothing the periodic component of ThM ..,
it is likely that a significant part of the remaining signal is
contributed by elastic structure, through first- and higher
order cross-coupling effects forecast by asymptotic theory,
as well as non-asymptotic effects. This clastic signal appears
to be strong enough to interfere with the zeroth-order
anelastic transfer functions, which would, if measurable,
provide a simple data set from which to ecstimate
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long-wavelength aspherical {. Because of the ambiguity in
the source of amplitude anomalies, phase data, (which, as
illustrated by Fig. 3(b), are virtually uncorrupted by an
anelastic signal for the wavelengths considered here) must
be incorporated in order to separate the effects of elastic
and anelastic structure in the data. This may be
accomplished by employing an a priori elastic model
constructed using phase data, as did Durek et al. (1993), or
by performing joint elastic-anelastic inversions using both
phase and amplitude data. At present, no joint inversions
have been performed, but a number of aspherical elastic
models constructed using long-period phase data exist,
including those of Masters ef al. {1982), Nakanishi &
Anderson (1982, 1983, 1984), Nataf, Nakanishi & Anderson
(1984, 1986), Tanimoto & Anderson (1984, 1985), Davis
(1987), Smith & Masters (1989), Montagner & Tanimoto
(1991), Masters, Bolton & Shearer (1992) and Su,
Woodhouse & Dziewonski; (1993).

Variance reductions of over 85 per cent for best fitting
polynomials to measured 70, transfer functions imply that
zeroth-order asymptotic theory provides a good description
of the amplitude effects of long-wavelength anelastic
structure, over and above those of elastic structure.
Therefore, when aspherical elastic structure and the
resuiting amplitude signal are known, an appropriately
smoothed T, interpreted with asymptotic theory, should
prove useful for modeiling aspherical Q from normal mode
measurements.

4 RAYLEIGH WAVEPACKET AMPLITUDE
PERTURBATIONS

4.1 Measurements

Measurements of surface wave amplitudes are performed on
Rayleigh wavepackets excised from the synthetic seismo-
grams. To measure the waveform parameters at the centre
frequency of a given multiplet, we first calculate the
expected group arrival times of that frequency component of
R, through R, using the group velocity of the spherical
carth multiplet. For each arrival time, #,, a half-hour
segment centred on ¢, is excised from the synthetic time
series and the Fourier transform of that segment is used to
find the amplitude of the specified component frequency for
that wavepacket, as illustrated in Fig. 11. For each modal
frequency in the chosen range, we record two sets of
amplitude ratios, which characterize the effects of elastic
and anelastic structure together and anelastic structure
alone, for wavepackets R, through R,. These may be
expressed, respectively, as

Thbsa() = AGR (2)/ Agu(n), (21)
and
TN () = AR/ AGD (), (22)

where SW indicates that these are surface wave transfer
functions, which are plotted as functions of orbit index n.

4.2 Observations

As in our investigation of medal spectra, we examine first
the average amplitude perturbations for the set of 331

source—receiver paths. Results analogous to Fig. 3 are
shown in Fig. 12, where we have plotted the trends for each
wavepacket separately. Fig. 12(a) shows the averages of the
magnitudes of the total amplitude perturbations due to both
elastic and anelastic aspherical structure relative to RH
amplitudes. The size of the amplitude signal is roughly
proportional to both harmonic degree and wavepacket
index, and for the highest frequency multiplets in this study,
RH earth amplitudes are perturbed by aspherical elastic and
anelastic structure anywhere from a modest 10 per cent for
R, to 28 per cent for R,, to approximately 44 per cent for
the case of the R, wavepackets.

" The part of this amplitude effect attributable to the
introduction of long-wavelength anelasticity is displayed in
Fig. 12(b) as the averages of the absolute values of the
anelastic £5 to elastic 5 amplitude ratios. At /=285,
aspherical anelasticity perturbs the amplitudes of the elastic
+35 synthetics by 2, 15 and 28 per cent for R,, R, and Ry,
respectively. It is also evident that not only does the average
magnitude of the anelastic amplitude signal increase with
wavepacket index and barmonic degree, but so too does the
size of the perturbation due to anelasticity as a fraction of
the total amplitude signal shown in Fig. 12(a). At [ =85,
and for higher orbits, the anelastic contribution is about half
of the total perturbation in surface wave amplitudes. This is
a stronger effect than is seen in the amplitudes of normal
mode spectra, where, for the multiplets measured, the
anelastic asphericity accounts for at most about a third of
the total perturbation in amplitudes (Fig. 3). This
observation reflects the fact that the 15hr time series we
transform to produce the normal mode spectra are
dominated by the first few surface wavepackets, which in
Fig. 12(b) show smaller anelastic amplitude perturbations
than the later Rayleigh wave arrivals.

We have also measured surface wave phase perturbations,
but the phase perturbations attributable to aspherical
attenuation were found, on average, to be negligibly small
compared with the effects of elastic structure and normal
noise levels, and the details of these measurements are not
presented.

Figure 13 displays amplitude measurements for the high
and low O paths (Fig. 4) at a frequency of 5.611 mHz, which
corresponds to the I = 50 multiplet. We plot In (T5y;_.,) as a
function of wavepacket index, and, for comparison, we also
display the natural logarithm of the elastic transfer function

TRNeln) = AGD()/ Arn(n). (23)

For the elastic amplitude ancmalies, each path shows a
distinct pair of trends, one for even and one for odd index
orbits. The pattern does not, however, display the symmetry
of opposite slopes anticipated by linearized ray theory, and
1s similar to the results displayed by Woodhouse & Wong
(1986) and Durek er al (1993). Introducing the long-
wavelength anelastic model appears to rotate the pattern for
each path; downward for the low { path and upward for the
high @ path. Closer inspection reveals that the slopes of the
even and odd trends in cach case are approximately shifted
by a constant.

Alternatively, the nature of the effects of the aspherical
anelastic model on the amplitudes of Rayleigh wavepackets
can be illustrated by plotting In (T%,) against wavepacket
index. Such transfer functions for the high and low Q paths
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Figure 12, Perturbations in wavepacket amplitude as a function of harmonic degree for Rayleigh wavepackets R\—Ry. A separate trend is
plotted for each wavepacket index. Each point represents an average, over 331 synthetics, of the magnitude of the perturbations
{8AfAY=1—-(A"fA). A and A’ are amplitudes at the specified frequency obtained from the spectrum of the excised wavepackets of a
‘reference’ and a ‘perturbed’ synthetic. In (a), the reference synthetics are RH and the perturbed synthetics are anelastic £5, so that the
amplitude perturbations shown are the result of general elastic and anelastic aspherical structure. In (b), the reference becomes the elastic £5
synthetics, so that (b) represents the contributions to the perturbations in (a) from anelastic asphbericity alone.
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Figure 13, Surface wave amplitude perturbations In (TR}_.,) and In (T

Rli—sals at § =50, plotted as a function of wavepacket index for the high

and low ( paths. Separate trends are plotted for odd (circles) and even (triangles) index wavepackets. The effect of the anclastic asphericities
is roughly to rotate the pattern of perturbations that results from elastic asphericities; upward for the high @ path and downward for the low @

path.

at 5.611 mHz are shown in Fig. 14. It is clear that in each
case the perturbations for odd- and even-order wavepackets
approximate a single linear trend, as one would expect if the
paired slopes of Fig. 13 are shifted by the same constant,
Also shown in this figure are theoretical lines with slope
nw,a (6Qk)
2up Qe \ Qr /'
where a is the radius of the earth and u, is the group
velocity of the unperturbed multiplet. This prediction is
derived from linearized ray theory and is discussed in
greater detail in the next section and in Appendix B.

That the transfer functions In (75%,) tend to curve as

Te= (24)

wavepacket index increases is evident in Fig. 14. Such
deviations from linearity become much more pronounced at
higher frequencies. Fig. 15 illustrates this by showing the
high and low Q path transfer functions at a series of
multiplet indices corresponding to increasing frequencies.
As frequency is increased, the magnitude of transfer
function slopes also increases. At the same time, the even-
and odd-order trends tend to separate and become less
linear for the later arriving wavepackets. Fig. 16, which
shows the [ =50 transfer functions for the set of eight paths
of Fig. 8, demonstrates that while the general slope of the
transfer function is correlated with the average Q anomaly,
80,, of a path and with the expectations of linearized ray
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4

Rayleigh wavepacket index

Figure 14. In (T2Y,) at ! = 50 for the high and low Q paths. Plotted as dotted lines are the theoretical slopes, y’, predicted by linearized ray

theory and given by eq. (24).

theory, the size and nature of deviations from linearity can
vary greatly from path to path.

The observed deviations are strongest for paths across
which there are relatively large gradients of aspherical
structure. In Fig. 15, the transfer functions of the high @
path show much greater separation and non-linearity than
do those of the low Q path. Referring back to Fig. 4, we see
that the high @ path lies tangent to structural contours
through much of its length in Asia and Northwest Africa
and, thus, is a high gradient path compared with the low Q
path which is tangent to contours only briefly in the South
Pacific. In Fig. 8, we can see that paths 6, 7 and 8 all pass
through the steep gradients on the sides of the extended low
@ ‘valley’ in the Scuth Pacific, but have three different
orientations with respect to that feature. In Fig. 16 these
three paths display three different types of strong non-linear
deviation.

4.3 Discussion
4.3.1 Theoretical expectations

The linearized ray theory (LRT) developed by Woodhouse
& Wong (1986), and generalized by Romanowicz (1990) and
Durek et al. (1993) to account for aspherical anelasticity, is
summarized briefly in Appendix B, This theory has two
important predictions relevant to our observations. First, in
the case of an elastic earth model, aspherical structure
focuses or defocuses surface waves depending on the
direction of travel between source and receiver. As a
consequence, the theory predicts that the amplitude ratio
() = [AL“9 /AR, plotted on a logarithmic scale as a
function of Rayleigh wavepacket index n, will produce two

straight lines of opposite slopes, for arrivals of odd and even
index. This implies

It [re(n + 2)] — In [ri(n)]

2
_ In [r{n + 1)] ; In [ (n + 3)] , 25)
or
4, ="t Dr(nt3) (26)

rp(r)ry(n+1)

Second, surface wavepackets on an earth model with
aspherical attenuative structure, travelling on a great circle
with average Q perturbation 80, accumulate an amplitude
perturbation which adds to the slope of each of the elastic
trends the value v, as defined in eq. (24). v; is the net slope
for even and odd wavepackets combined, so that

In[ry(n +2)) = In ()],

5 &
R In[r.(n +1)] ; In[ry(n + 3)] , @7

and

din = eXp (47y). (28)

In addition, we anticipate that lateral gradients in earth
structure cause the surface waves to deviate from the great
circle paths used to calculate the linearized elastic and
anelastic amplitude effect, leading to the failure of LRT for
multiply orbiting waves. Path deviations accumulate with
each circuit of the Earth, so that the magnitude of
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departures from the predictions of LRT is expected to
increase with wavepacket index. Wavepackets travelling in
opposite directions will be bent differently, so that the LRT
amplitude effect will be perturbed differently for odd and
even index arrivals. In particular, the colinear trends LRT
forecasts for the anelastic case will be separated by path
wander. Also, the sign of the relevant gradient term is such
that paths tend to wander away from high-velocity regions
and into low-velocity zones, so that, as noted by Woodhouse
& Wong (1986), multiply orbiting surface waves can become
trapped in low-velocity paths. The proportionality of
velocity and Q (eq. 6) thus implies that path-averaged Q will
be, on average, lowered for multiply orbiting surface waves,
resulting in the depression of average amplitudes.

4.3.2 Qualitative analysis

Our synthetic observations of amplitude perturbations
produced by elastic structure, like those of Woodhouse &
Wong (1986), most often show only rough agreement with
the first-order predictions of LRT. Fig. 13 gives two
examples of synthetics that display trends which are separate
for even and odd orbits, but neither reciprocal nor even
linear. Such discrepancy is clearly inherited by the overall
signal of elastic and anelastic structure.

The part of the amplitude signa! due solely to aspherical
anelastic structure appears much better forecast by LRT.
The observed trends displayed in Figs 14 and 15, in contrast
with the elastic signal of the Fig. 13, nearly overlie the
theoretical values. This is true even for the high O path,
which may be seen in Fig. 4 to be characterized by the
strong gradients expected to produce path wander. Only for
frequencies of 8 mHz or more, which are more sensitive to
the shorter wavelength structures in our model, do the
observations for that path exhibit significant non-linearity
(Fig. 15). Good agreement between anelastic LRT and
coupled synthetic data is generally observed, although the
paths of some synthetics, including paths 6 and 8, do sample
structures in such a way as to produce larger deviations.

The deviations from LRT are seen to exhibit several of
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the identifying characteristics of path wander. Anomalies
are usuaily larger for paths that sample high-gradient
regions. In Figs 14-16 the anomalies are seen to distinguish
odd and even trends and to increase with wavepacket index,
as anticipated. Evidence for attraction to slow, low Q, paths
is also observed. Amplitudes are, on average, depressed,
though small or intermediate ¢ anomalies, together with
strong gradients of structure near source or receiver, can
produce exceptions such as those observed for paths 1 and
7.

4.3.3 Statistical analysis

Table 3 quantifies the extent to which LRT succeeds in
forecasting elastic amplitude anomalies by displaying
(i — 1ll, the rms average deviation from unity of d,,,, for
an array of different modal and wavepacket indices,
Departures from LRT are seen to increase with n, from 0.11
to 0.21 as # varies from 1 to 5 at I =50, and with /, more
than doubling for n=1 as ! varies from 25 to 75. Path
wander, which is stronger for surface waves with shorter
wavelengths, and which accumulates with each orbit, can
account for each of these trends.

If LRT were assumed to apply exactly for these
synthetics, the values for ||d,, —1|| in Table 3 would be
misinterpreted as the result of anelastic structure, through
eq. (28). We can use this expression and eq. (24) to solve
for the aliased path-averaged Q perturbation, 60,,,,.. from
elastic structure

2
Q0

2rawm,

00 = (5225 ) In (4, = (k) In (d ). 29)
The function g(k), which is highest for the low-frequency
multiplets with high modal Q, determines the sensitivity of
the multiplets to elastic aliasing. Table 3 displays the values
of 8Q ;.. calculated for each value of {|d,, —1|| in that
table. The numbers in Table 3 are better interpreted
through comparison with the largest @ perturbations

produced by the anelastic model at each frequency, 0.,

Table 3. Effectiveness of data ‘desensitizations’ and estimates of the resulting aliased 60 from elastic amplitude perturbations.
d,=(R, 2R, .3)/(R,R, ) where n is the Rayleigh wavepacket index. Reported values are rms averages over all paths, winnowed at three
standard deviations. Aliased 8Q values at [ = 25,50,75 are compared with 80 from anelastic structure on the high @ path, which represents the

largest perturbation used in this study.

1=25 ! =50 =75
0 (=D 6Quasee FgE |y =Dl 8Qursas L [(dy — 1) Qurian ogkics
1 08 ~15  280% 11 ~6 55% A7 ~5 40%
2 10 ~20  380% 15 ~ 8 75% 22 ~6 50%
3 13 ~25  480% 17 ~9 85% 24 ~T 60%
4 18 ~35  680% 19 ~10 9% 27 ~ 8 70%
5 27 ~50  960% 21 ~11  100% 34 ~ 10 85%
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Figure 17. Aliased 80 from the amplitude effects of elastic structure, as functions of harmonic degree for wavepacket indices n = 1-5. Shown
for comparison is the trend for 0 resulting {from anelastic structure in the model for the high O path. In general, elastic aliasing becomes less

significant at higher frequencies.

which correspond to the perturbations for the high @ path.
The [ =25 multiplet is relatively insensitive to structure in
the upper mantle, where the anelastic structure of the model
is located. The path-average ( perturbation is thus smail for
this multiplet, and since its 2 is high, making it sensitive to
aliasing, the relative aliasing produced for [=25 is
extremely high. Modal @ is lower and upper mantle
sensitivity is higher for /=50 and [=75, but average
aliasing is still near 50 per cent of the maximum amplitude
effect from anelasticity, even for r =1, where aliasing is
weakest.

This point is further illustrated by Fig. 17, which displays
the average aliasing for the 3-9 mHz frequency range. The
function g(k) declines quickly with frequency, and greatly
magnifies the aliasing for only low [ muitiplets, which are
not expected to obey LRT well. For mid-range frequencies,
4-6 mHz, aliased 60 for n =1 or n =2 is about half as large
as that from realistic anelasticity along the high Q path.
Further increasing the frequency slightly decreases the
relative size of the aliasing, but the improvement is not
dramatic, and at higher frequencies it is expected that the
effects of shorter wavelength elastic structure, not included
in our model, will become more significant. Because of the
strength of aliasing observed, which is never weaker than
the average aspherical @ signal throughout the frequency
range considered, it is unreasonable to rely on LRT to
remove the elastic signal from surface wave amplitude
measurements.

LRT may still be applicable to the interpretation of T3
functions, which can be retrieved from T3y, by employing

an a priori elastic model. Table 4 summarizes the success of
eq. (24) in explaining the variations in net slope of the
transfer functions Ty ,.(n) and T3 (n). Because LRT
predicts that the transfer functions w1ll be linear, we find,
for each measured transfer function the slope of the line that
best fits the logarithmic trend, and we report variance
reductions of the form

L (B = vy
A 30
v DITESS o

Table 4. Variance comparisons of the measured and predicted
signals of aspherical anelastic structure in synthetic Rayleigh wave-
packet amplitudes. The data slopes are best fits to the In [75%(n)]
transfer functions defined by eqs (21) and (22), for the first three or
first eight Rayleigh wavepackets, The theoretical slopes are 7,
from linearized ray theory, as defined in eq. (24). Recorded are the
variance reductions accomplished by removing the theoretical
slopes from cach type of measured slope.

slopes compared orbits variance reduction

data theory =25 [=50 /=175
RBi—Rs 62% 6% 67%

In(7eE,) gt '
Ri—Rs 43% 5% 48%
, Ri— R 2% 18% 28%

In(T3..) YLRT

B-R 3% 13%  28%



where f is best fit slope and ‘data’ are either In (T3%_,.) or

In(T5% }. Because we anticipate greater departures from
LRT in later arriving wavepackets, we compile separate
statistics for the best fits to the trends of R,—R; and R,—R,,.

Throughout the spectral range considered, LRT accounts
for about 65 per cent of the variance in the slopes of the
R,—R; surface wave amplitude trends due to anelasticity
alone. This is comparable with the success of asymptotic
theory in predicting the simplest normal mode amplitude
effect of anelastic structure. As the relative strengh of the
anelastic amplitude signal increases with / (Fig. 12b), the
fact that the linear transfer functions of LRT account for
much of this signal implies that the ability of LRT to
forecast the trends of the overall amplitude effect will
improve. Indeed, while LRT accounts for less that 3 per
cent of the variance of In(TRy_.) at I=25, it explains
nearly 30 per cent of the variance at /=75. As expected,
LRT in general explains a smaller percentage of the trends
when later wavepackets, subject to more path wander, are
included.

4.3.4 Summary and implications

Surface wave amplitude measurements for elastic +5
synthetics reveal significant departures from LRT that would
severely bias inversions of data for anelastic structure, if
LRT alone were used to model the effects of elastic
structure. By illustrating the {-dependence of the aliasing of
elastic amplitude effects, the results displayed in Table 4 and
Fig. 17 complement those of Durek et al. (1993), who
demonstrated the importance of aliasing by using LRT to
create ‘desensitized’ data, d,,, from elastic earth synthetics,
and then retrieving a model of apparent aspherical Q.
Similar aliasing can result from the desensitizing method
employed by Romanowicz (1990). We have demonstrated
that employing the assumptions of LRT to remove the signal
of elastic structure is, at any frequency, likely to be useful
only as the first step in an iterative process, as argued by
Durek ef al. (1993).

By contrast, LRT describes fairly well the contribution
from anelastic structure, over and above that of elastic
structure, to surface wave amplitude anomalies for the first
three or four Rayleigh wavepacket arrivals, and, like
asymptotic theory for normal mode amplitudes, should be
able to serve as a simplifying assumption to invert such data
for models of aspherical anelastic structure, if an accurate a
priori elastic model is assumed. However, to the extent that
LRT holds, trends in odd and even index Rayleigh
wavepacket arrivals are identical, so that the data would be
insensitive to odd degree anelastic structure.

Departures from LRT, for the anelastic case, become
significant for later surface wave arrivals, and seem largely
attributable to surface wave path deviations expected to
result from gradients of structure between .source and
receiver. These departures may supply additional informa-
tion about aspherical structure. In particular, the odd and
even index trends of In(77Y,) become separated and, on
average, path-averaged ¢} is depressed for multiply orbiting
waves. Because both theory and observation indicate that
odd and even orbits sample different structures on either
side of the great circle, amplitude measurements for the
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later wavepackets demonstrate some sensitivity to odd
degree aspherical anelastic structure, as well as to gradients.

5 RESULTS AND CONCLUSIONS

The principal results from this study are as follows.

(1) Aspherical anelasticity accounts for at most 50 per
cent, and more typically 30 per cent, of the average
amplitude signal of long-wavelength elastic and anelastic
aspherical earth structure, for long-period normal modes or
surface wavepackets. The relative size of the anelastic signal
is largest at the upper end of the frequency range
considered, where the ecffects of unmodelled shorter
wavelength elastic structure are expected to become
significant, and in the case of surface wave amplitudes,
anelastic effects are strongest for the later wavepackets,
which are often not detectable in real data. Thus, though
the effects of aspherical anelasticity in long-period data are
surely significant enough to provide useful information
about attenuative structure, in general more than half of the
amplitude signal will be attributable to elastic structure,
which must be taken into account when interpreting such
data.

(2) Less than 1 per cent of the variance in the smoothed
transfer functions Thppe..(!), which give the relative
amplitude shifts of normal mode peaks due to elastic and
anelastic aspherical structure, is accounted for by the
zeroth-order equation for the anelastic amplitude effect,
even though zeroth-order asymptotic theory predicts that
any smooth ftrend in perturbations to normal mode
amplitude spectra by aspherical earth structure results only
from anelasticity. This is evidence that first- and higher
order elastic effects are significant enough that simply
removing the strong oscillating zeroth-order component of
Thr.c(l) is insufficient to separate the elastic and anelastic
amplitude signals in normal modes.

(3) Throughout the spectral range considered, surface
wave amplitude data ‘desensitized’ to elastic structure using
linearized ray theory (LRT) give values for path-averaged
Q perturbations which are generally 50-100 per cent of the
size of the maximum anelastic model perturbations, when
synthetic data from a model with only elastic asphericities
are used. This implies that deviations of surface waves away
from great circle paths cause a breakdown of LRT
significant enough to blur the distinction between elastic and
anelastic surface wave amplitude effects forecast by that
theory.

The preceding points demonstrate the necessity of
employing phase data, which are practically insensitive to
anelastic structure, to help determine elastic earth structure
unambiguously, if long-period amplitude data are to be used
to retrieve models of long-wavelength aspherical attenuative
structure. The joint inversion of phase and amplitude data
for elastic and anelastic structures, or the use of a priori
elastic models derived from phase data (i.e. Durek et af,
(1993), is recommended. Further results of this investigation
indicate that the theoretical approximations considered may
be useful for simplifying the inversion for aspherical
anelasticity.
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(1) Fifty-five per cent of the variance of the unsmoothed
transfer functions TUYL(/) and about 85 per cent of the
smoothed function variance is accounted for by zeroth-order
asymptotic theory for anelastic structure, where TL™ (1)
maps peak amplitudes of normal mode spectra of an elastic
earth model to those of a model including anelasticity. This
suggests that, given an a priori elastic model and a
sufficiently sophisticated smoothing algorithm, zeroth-order
asymptotic theory may be useful for simplifying the
inversion of To\.(/) for long-period aspherical anelastic
structure. However, the success of asymptotic theory in
predicting synthetic trends also indicates that normal mode
amplitude data may prove insensitive to odd-order anelastic
structure.

(2) Slopes for In [T3¥ (n)] predicted by LRT account for
up to 67 per cent of the variance of measured slopes for the
synthetics, for wavepackets R1-R3. For each frequency,
T3¥ .(n) maps the Rayleigh wavepacket amplitudes for an
elastic earth to those of a model with aspherical anelasticity,
as a function of orbit index. Trends are observed to be
nearly linear for these first few arrivals. Together these
results indicate that the LRT approximation may be
appropriate for interpreting 75% (n) for R1-R3, but this
simpiification results in insensitivity to odd degree anelastic
structure.

(3) LRT is less successful in predicting In [TV, (n)]
trends for R1-R8, giving approximately 50 per cent variance
reductions. Path wander due to bending of ray paths by
elastic structure appears to be responsible. The departure
from LRT gives such data some sensitivity to odd degree
aspherical anelastic structure.

It must be emphasized that all of the above results and
conclusions apply to long-wavelength aspherical models.
The effects of shorter wavelength structures are likely to
modify these results. In the future, it will be possible to add
realistic models of such structures, to include Love waves in
the investigation, to test quantitatively the effectiveness of
the first-order (in (1//)) terms of the asymptotic theory in
approximating anelastic amplitude perturbations, and to
model the path wander of surface waves.
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APPENDIX
A Asymptotic normal mode theory

The approximate equations for a seismogram derived by
Romanowicz (1987) can easily be generalized to include
attenuation. The asymptotics that result provide descrip-
tions, correct up to first order in (1/), of how both elastic
and anelastic aspherical structure perturb the amplitudes
and phases of the fundamental branch normal mode
multiplets of a rotating hydrostatic earth.

The Born approximation for a seismogram at time ¢ and
angular distance A from the source is:

s(t, Ay = Be [2 oAy exp (— agt) exp (int)], (A1)

where K corresponds to the radial and angular indices,
(r, 1), of the multiplet with degenerate frequency wg. The
attenuation factor a, is related to the degenerate O of the
multiplet by oy = 0, /2Qx = Wxg /2.

For the SNRI model and in the case of an isotropic
source,

T cot A

=alf =M \f co:. kA ) A2
0::\/51nA 8k (A2)

M, is the scalar moment of the source, & =1+ 1/2, and oy,
is a function of the vertical eigenfunctions of the reference
model. For a model that includes elastic and anelastic
asphericities, and again for an isotropic source,

Ay = a,[G{A) cos (kA — 7/4) + G(A) sin (kA — 7/4Y],

{A3)
where
Hps k
= My— = A4
e “avsina Y2x (A4)
% cot A
G (A) = 1+7[( B ")+ o (6ak—6ak)]+u60k,
(A5)
cotA aA B /%, cotA .
%(8) =% —?(66,c—60k)+:t(2;+ o 60,(). (A6)

In the above, a is the radivs of the Earth, and U is the group
velocity at frequency w,. We have also used the definitions

2T
6&k=§; 5 da%(s) ds, (A7)
A
8, =— | 60%s)ds, (A8)
A 0
1 25T
Gu=5- [ a0 do. (A9)
1 A
=3 | 9@ an, (a10)

where the integrals are along the source to receiver great
circle. & is defined by

sin (q& A)

sin A

@, =~ 32500 sin ¢ — 3,(60) cos ¢],  (Al1)
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and 6 ! is the generalization of the local frequency (Jordan
1978, Woodh(mse & Girnius 1982) to include attenuation:
0% = Bl +i day = Swi + i 2% 6qk (A12)
If o is replaced by @, the above relations become identical
to egs (1), (3B), (44), (45), (47}, (57) and (58} of
Romanowicz (1987).

If we consider now just the contributions to eq. (A3) from
the SNRI model and aspherical elastic structure, reducing

do, to dmy, and I, to D, = Re [D,], we can rewrite eq.
(A1) as:

5(t,8) = 9 {5 a4(Aus + 8t exp (~ 30

X exp [i{wy + Ak)t]}, (A13)
with
Agr =co8 Ay +———sin A, {Al4)
D t A
A4, = 44 [(2]:+ cc;k 6wk) cos A, — bw, sin kk] (A13)
A, =80, + Etan A (A16)
The abbreviations A, =kA—(7/4), D,=D,—D, and

dew, = 6@, — 6, have been used. The summation has been
restricted to the fundamental branch, and the expressions
for amplitude and frequency are, for short times, correct to
first order in (1/[). Note that the zeroth-order term of the
multiplet frequency shift A, is just the path-averaged local
frequency & of the geometrical optics approximation for
self-coupling.
The relative amplitude shift is

S, _
A(Jk

Al — D, cotA
2 ( Sw, tand+ E4 (A17)

2k % B, sec /’L)
The spectrum produced by the Fourier transform of eq.
(A13) will have multiplets with amplitudes shifted from their
SNRI values according to eq. (A17). The frequencies of the
perturbed multiplets will be shified by the amounts given in
eq. (Al6), but the change in frequency will also alter the
phase of the multiplet as measured at the location of the
unperturbed multiplet (@ = &, ). For a time series of length
T satisfying the short-time approximation, A, T <1, and
thus consistent with the Born approximation, this phase shift
will be

A

wgcclas) = _
&

(A18)

Including the anelastic model perturbations changes the
displacement equation to

s(t, A)= Re [2 @ (Ao, + 6A,) exp [~(a, + Say)t]

x exp (il(we + A+ T} | (a19)

where, with d, = $m {%,],
L
bay, = &dy, + % tan A, (A20)
A d tA-—
w;{ancl) — % ( 6£Yk tan Ak + 2_; + C(;k (Sak Sz lk) (AZI)

When the spectrum for the seismogram of eq. (Al9) is
compared with that of eq. (Al3), the observed phase shift is
given by eq. (A21). Amplitudes for an infinite time series go
as 1/a, so that amplitude perturbations are given by

{ancl)
ika; =1- 9% . (A22)
Afetas) @

. If we consider only the zeroth order in (1/[}, so that

da, = d&,, and define a great circle average of aspherical Q
by perturbing the relation @, = w, /2a;:

90, _ 0%

=——, A23
o) &y ( )
Eq. (A22) then becomes
A(uncl) S A
k 2 (A24)

s — LT
At O

If we use a time series of length 7, subjected to a
Hanning taper,

2

3 (1 — 08 ?), (A25)
then peak amplitudes go as

1 B

1- —aT (—) (——), A26

[L—exp( “)]w 2+ ( )
with § =2x/T. For this case, eq. (A22) becomes
A(anel) S5 T
k_r=1__a@[y+—ww]’ (A27)
Aletas) o, exp (aT)—1

where y=(B%+3a)/(f*+ &*) and eq. (A24) changes
accordingly.

Equation (A20) comes from the time-dependent part of
the real amplitude of expression eq. (A3), under the
cotA | ) .
—87€—s1n Ay gives amplitudes
much greater than the size of the amplitude perturbations.
This is not the case near a node of the SNRI model. Backing
up one step in the derivation of eq. (A20), we have:

assumption that Ay, =cos A, +

o, (3k cot A )
=— —— &8, ) tan A. A2
%= cos Ay 2k Bk T ) 10 Ak (A28)

If we are not at a node, these terms combine to give eq.
(A20). At nodes the magnitude of Ay, is of the same order
as &4, and the first term on the right in eq. (A28) is second
order in the perturbation, and may be treated as vanishing.
The remaining terms produce a function that oscillates
about zero, rather than about &&,, with a first-order
amplitude that depends on both &, and d,., rather than just
the latter.

It also should be noted that though we have, for the sake
of clarity, presented only the equations for an isotropic



source, the introduction of realistic moment tensors does
not significantly alter the relevant characteristics of egs
(A20) and (A28). Generalizing eq. (78) of Romanowicz
(1987) for anelasticity, shows that the effect of a moment
tensor source is to add another first-order gradient term to
d
2%
(1986), indicates that the results for the longitudinal
horizontal component will differ only slightly from those for
the vertical component, while the transverse component will
lack the zeroth-order local frequency and attenuation terms,
but remain similar in the first-order terms.

Also, the mathematical work of Romanowicz & Roult

B Lincarized ray theory

A second way to view the effects of anelastic aspherical
structure on synthetic seismograms is as amplitude and
phase perturbations of surface waves. We consider here, in
particular, the sequence of wavepackets R,—R,.

For the elastic case, Fermat’s principle gives for the phase
shift of R,,:

¢, (B1}

An
oy, - -2 [ 0.0),

Co Jo Co

where ¢ is phase velocity and A, is the angular distance
along the great circle 8 = /2 travelled by R,,. This implies
that

—wacy '[I, + 3(n — DL} (n odd)
—wacy '[—1, + inl,)

oy, = { (B2)

(n even)’

where [; is the integral of eq. (B1) along the source—receiver
minor arc and [, that around the whole great circle. Thus,
the phase shifts as functions of orbit number form two
parallel lines.

Woodhouse & Wong (1986) have shown that a similar
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relationship holds for the amplitude anomalies:

tn (éé),, = {%m Alh+5(n = 1] (n 0dd)

. B3
A 1csc A[J, — 3nt,] (n even) (B3)

Here, J; and J, are the minor arc and great circle integrals of
a function that depends on the second transverse derivative
of phase velocity along the path:

J o= f : sin (A — ¢)cg '[sin ¢ 95 — cos ¢ 3,|5c d. (B4)
0

In this approximation, therefore, the amplitude anomalies
of even and odd index wavepackets should form two lines
with opposite slopes.

The attenuation term in eq. (Al9) results in a simple
modification of the surface wave amplitudes. Let us
abbreviate, for the moment, (8A4/A), as a,. If the slopes of
the surface wave trends of eq. (B23) are ty=3(Ina,,,—
Ing,), so that in the elastic case we have a,,,=
a, exp (£2y), then when anelastic structure is included we
have a, ,, = a, exp (£2y) exp [—Sa(Ar)]. Since the time for
one orbit is approximately At = 2ma/u, for group velocity
iy, We can write:

A, A ~2na
(A—;;) - (2—{;) exp (£27,) exp (— 6ak). (BS)
k' n+2 o Uy,

This is a relation for the total amplitude shift for elastic
and anelastic structure and implics that the slope in the

—ma
6ak). This shift

logarithmic plot has changed to +v + ( »
k
applies to both the even and odd index trends. If we display
in the same manner just the relative perturbation introduced
by anelastic attenuation, the even and odd index trends will
be colinear, with a slope of simply:
, wa na wy, (60,
oo 2 (129
* ey 4y e 2Q \ Qi
for surface waves at the frequency of the fundamental
branch multiplet indexed by k. The last equality assumes the
zeroth-order approximation of eq. (A23).

(B6)



