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New and refined constraints on three-dimensional
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Abstract. We present the results of generalized spectral fitting (GSF) regressions
which estimate normal mode structure coefficients for the observable spheroidal and
toroidal free oscillation multiplets below 3 mHz. The size, accuracy, and precision
of our new catalogue of modal constraints make it a powerful new tool for assessing
and refining three-dimensional Earth models. The estimates include more than 3100
coefficients for 90 multiplets and 25 pairs of coupled multiplets, including several
deep mantle overtones previously obscured by fundamental modes. The coefficients
constrain mantle structures of both even and odd spherical harmonic degrees,
through degree 12 in some cases. Improvements in accuracy and precision have
been achieved with three innovations: the development of GSF, an enhancement
of the established spectral fitting technique which incorporates both Coriolis and
structural coupling between multiplets; the application of GSF to an edited, high
signal-to-noise and geographically diverse data set of more than 4500 seismograms
from 33 high moment earthquakes; and the assignment of coefficient uncertainties
using a Monte Carlo method to simulate the effects of seismic noise, theoretical
errors, and coefficient covariances. The results of GSF are assessed by examining
the internal consistency of estimated coefficients and through comparisons with
recent mantle models. The new catalogue of structure coefficients and uncertainties
is available as an electronic supplement to this paper and through the University of

Colorado internet site.

1. Introduction
1.1. Research Program

The past decade has seen a dramatic increase in
the quantity and distribution of broadband seismo-
graphic stations and the occurrence of several very
strong earthquakes (Figure 1), which have yielded thou-
sands of new high signal-to-noise ratio seismograms.
These data provide the opportunity for much more de-
tailed analyses of the Earth’s free oscillation spectrum
than have been attempted to date. Comparisons of re-
cent three-dimensional global seismic models reveal sig-
nificant discrepancies which emphasize the need for ad-
ditional normal mode constraints on aspherical struc-
ture. Such constraints can be used to assess existing
models and address persistent questions about correla-
tions and scalings between variations in vs, vp, p, and
topography on internal boundaries [e.g., Ritzwoller and
Lavely, 1995]. For these reasons, we have made our
goal the establishment of a new, higher-quality, and
greatly expanded catalogue of normal mode structure
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coefficients, which serve to constrain three-dimensional
Earth structure.

This paper presents the first major steps in this pro-
gram: (1) the development of generalized spectral fit-
ting (GSF), an enhancement of the established spec-
tral fitting technique [Ritzwoller et al., 1986, 1988;
Giardini et al., 1987, 1988; Li et al., 1991; Widmer
et al., 1992a,b; Tromp and Zanzerkia, 1995; He and
Tromp, 1996], which incorporates intermultiplet cou-
pling through aspherical structure and the Coriolis force,
(2) the assembly of an expanded data set of ~ 4500
edited broadband seismograms from 33 strong earth-
quakes (Table 1), (3) the application of GSF to these
data to obtain estimates of more than 3100 normal
mode structure coefficients from 90 different multiplets
with frequencies below 3 mHz (Figure 2 and Table 2),
and (4) the development of a Monte Carlo method of
error analysis and other tools for assessing and quanti-
fying the accuracy and precision of the coefficient esti-
mates. Most of the multiplets analyzed sample hereto-
fore poorly constrained structures in the transition zone
and lower mantle. Thus the new coefficient estimates
provide an important complement to existing body and
surface wave data. They also establish the utility of
GSF, which may be employed in future analyses of the
normal mode spectrum above 3 mHz.
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to even-degree structures, and by inaccuracies resulting
from structures unspecified in the regressions, which es-
timated only the few longest wavelengths of aspherical
structure.

Most recent 3-D Earth models, including S12.-WM13
[Su and Dziewonski, 1994], MK12.-WM13 [Dziewon-
ski and Su, 1995], and SAW12D [Li and Romanowicz,
1996], have been constrained to fit only body and sur-
face wave data. Models that incorporate normal mode
constraints, such as S16B30, have used structure coeffi-
cients that are, for the most part, almost a decade old.
Synthetic seismograms generated from such models fit
long-period seismic spectra much more poorly than do
synthetics constructed using our normal mode struc-
ture coefficient estimates, as demonstrated by Figures
3b and 3c. Comparisons of models, like those of Fig-
ure 4, indicate poor correlations in the transition zone
and lower mantle, which are not as well sampled by
body and surface waves as are other regions other re-
gions of the mantle. In contrast, most of the normal

stations existing
before 1/ 1/8 2

events before 1/1/87

Figure 1.  Geographical distribution of the sources Table 1. Earthquakes
and receivers employed. There has been a marked in-
crease in the number of events and stations employed

compared to those used, for example, by Ritzwoller et Index Date Location %%gll\?ﬁf ’
al. [1988].
1 June 22, 1977 Tonga 21.3*
2 Aug. 19,1977 South of Sumbawa 40.5%
. . 3 Dec. 6, 1978 Kuril Islands 6.4
1.2. Motivation 4 Dec. 12, 1979 Ecuador Coast 19.6*
Individual free oscillations, or normal mode singlets, 5 July 17,1980  Santa Cruz Islands 48
. . 6 June 22, 1982 Banda Sea 1.7
are clustered into usually unresolved spectral multiplets 7 March 28, 1983 New Ireland 46
composed of modes with similar wavelengths and nearly ) Nov. 20: 1984 Mindanao 929
degenerate frequencies. These multiplet peaks charac- 9 March 3, 1985 Central Chile 10.1%

terize typical normal mode spectra, such as that shown 10 Sept. 19, 1985 Michoacan 10.6*

in Figure 3a. Broadband digital seismic data became 11 May 5,1986  Andreanof Islands 12.0°
eadil ilable in the late 1970 d Iy 1980s. T. 12 Oct. 20,1986  Kermadec Islands 4.5
Ieadily avatlable 1 the late S and early S 10 g3 Nov. 30, 1987 Gulf of Alaska 10.0*
take advantage of these data, the techniques of singlet 14 March 6, 1988 Gulf of Alaska 5.92
stripping [Ritzwoller et al., 1986; Widmer et al., 1992a] 15 May 23, 1989  Macquarie Islands 21.6*
and spectral fitting [Giardini et al., 1987, 1988; Ritz- 16 March 3, 1990 South of Fiji 3.0
woller et al., 1986, 1988; Li et al., 1991] were developed. 17 April 18, 1990 Minahassa 3.3
These methods were used to observe the splitting of sin- 18 July 16, 1990 Luzon 41
‘ pltling of 19 Dec. 30, 1990 New Britian 1.8
glet frequencies that was expected to be the dominant 20 April 22, 1991 Costa Rica 3.3
effect of aspherical Earth structure on isolated funda- 21 Sept. 2, 1992 Nicaragua 3.4
mental and overtone multiplets. The observations were 22 Oct. 11, 1992 Vanuatu 1.5
reported as structure (or interaction) coefficients, which 25 Dec. 12, 1992 Flores Islands 2-5
I 1 lated il 24 Jan. 15, 1993 Hokkaido 2.7
are nonlinearly re a.te to the observed multiplet spectra oz July 12, 1993 Hokkaido 5 72
but are linear functionals of Earth structure. Thesenew 26 Aug. 8,1993  South of Mariana 5.5%
constraints on three-dimensional (3-D) Earth structure 27 March 9, 1994 Fiji Islands 3.1%
were employed in the construction of only a few man- gg gune 37 iggi ls\Ioutg ‘})3f ‘llla\_ra 257'3 .
tle models, including SH.10c.17 [Masters et al., 1992] 5 (;1 Cr;e 4 1994 K?lr:il Islc; ;‘:ilsa 28?2‘
and S16B30 [Masters et al., 1996]. The utility of struc- 31 Dec. 28: 1994 East of Honshu 4.0
ture coefficients estimated with spectral fitting was lim- 32 July 30, 1995 Northern Chile 16.4*
ited by the relatively small number of multiplets ana- 33 Oct. 9, 1995 Jalisco 11.5
lyzed, by the isolated multiplet approximation, which
ignored some important information in normal mode aGSF moment estimate. Other moments are from the

amplitude spectra and confined the modal constraints Harvard CMT catalogue.
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Figure 2. Dispersion diagrams displaying the mul-

tiplets analyzed in this study. The type of symbol in-
dicates the maximum degree of structure coefficient re-
ported for each multiplet.

modes below 3 mHz exhibit strong sensitivity to struc-
tures at these depths, as demonstrated by the sensitivity
kernels included on Plate 1. For this reason, detailed
normal mode constraints from this spectral regime can
serve as useful tools for (1) assessing existing models of
both 1-D and 3-D v, and v, structures in the mantle
le.g., Ritzwoller and Lavely, 1995), (2) performing new
inversions for 3-D models, which may be constrained to
be geodynamically consistent [e.g., Forte et al., 1994;
Ritzwoller and Wahr, 1994], and (3) exploring the pos-
sibility of obtaining independent models of aspherical
density structures [e.g., Ritzwoller and Wahr, 1995].
Such constraints are provided by the catalogue of nor-
mal mode structure coefficients presented here.

Section 2 explains the relation between self- and
cross-coupling structure coefficients and Earth struc-
ture and describes GSF regressions. Section 3 discusses
the means by which we have enhanced the accuracy and
precision of the normal mode catalogue. The results of
the GSF analyses are presented in section 4. Section 5
describes the Monte Carlo simulations we use to assign
uncertainties. Section 6 discusses the potential applica-
tion of the new catalogue to the development of future
generations of 3-D- Earth models.

2. Methodology
2.1. Normal Mode Coupling

A spherically symmetric, nonrotating, anelastic, and
isotropic (SNRAI) Earth model may be represented by
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the expression mo(r) = [ko(r), po(r), po(r)], where &
and p are the complex bulk and shear moduli. In this
case, an aspherical Earth model is described by m(r) =
my(r) + ém(r, 6, $), and by a set of two-dimensional
perturbations, h4(8, ¢), to the radii of discontinuities
(rq) in the structural parameters. These perturbations
to the spherical model may be represented as sums of
spherical harmonic components:

dm(r) =) 8k} (r), 014 (r), 6p%(r)]Y; (0, 6) ,

s,t

1)

and
ha(8,¢) = 3 Y (0,9), 2
s,t
where s (> 0) and t (Jt| < s) index the harmonic de-
gree and azimuthal order, respectively, of the complex
spherical harmonics, Y}(6, ), which are normalized ac-
cording to the convention of Edmonds [1960].

Free oscillation multiplets of the SNRAI model are
identified by the type (spheroidal, S, or toroidal, T),
radial order (n), and harmonic degree (1), of their eigen-
functions. Each multiplet ¥ = (type,n,l) comprises
2141 degenerate singlet modes, referred to by azimuthal
index m. Assuming that aspherical perturbations to
Earth structure are relatively small, the singlets of a ro-

Table 2. GSF Frequency and Q estimates

Modes Frequency, — frREM Q Q-Q™™
(pHz) (pHz)

053 468.594 +0.10* 0.03 383+ 25° -34
0S4 646.882 +0.10 -0.20 373417 0
0S5 840.009 +0.10 -0.43 358 +12 2
056 1037.540 +0.05 -0.69 342+6 -4
057 1231.040 +0.05 -0.77  351+10 9
0Ss 1412.850 £ 0.05 -0.68 34745 9
059 1577.550 +0.10 -0.75 342+8 9
0510 1725.650 £ 0.11 -0.84 343+5 15
0511 1861.280 £0.13 -1.15 3408 18
0512 1989.180 £ 0.10 -1.21 33945 24
0513 2111.630 £0.11 -1.32 32245 15
0514 2230.070 £0.10 -1.34 31745 19
0515 2345.040 +0.13 -1.36 31445 25
0516 2457.020 +0.14 -1.21 308+6 29
0517 2566.200 £0.13 -0.93 3057 36
0518 2672.460 +0.12 -0.85 29645 37
0519 2776.150 £ 0.20 -0.84 - 283+5 34
0520 2877.780 +0.10 -0.60 280+5 39
0521 2977.260 £ 0.10 -0.48 270+5 38
0T 765.996 £ 0.15 0.32 268+22 40
oTs 928.366 +0.10 0.11 254416 37
oTs 1079.084 +0.10 0.24 249+34 43
ol7 1221.003 +0.10 0.29 20711 12
oTs 1356.553 +£0.17 0.43 201+10 14
oo 1487.070 £ 0.17 0.45 191+15 11
VAT 1613.666 % 0.41 0.39 175+19 2
WYAR 1737.418 +0.20 0.56 171410 4
0112 1858.819 £ 0.17 0.87 168+10 5
VAT 1977.878 +0.18 0.88 162+10 3
AW 2095.429 +0.18 1.06 158410 3
AT 2211.157 £ 0.40 0.80 155+10 3
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Table 2. (continued)

Modes Frequency, -/ Q Q-Q™
(pHz) (puHz)

AT 2326.403 £+ 0.27 1.20 148+10 0
o117 2440.317 £0.31 1.21° 147+10 0
WYATS 2553.047 £0.35 0.81 143410 -1
VAT 2665.755 +0.18 1.03 142410 -1
0720 2777.589 £0.33 0.90 139+10 -2
01%1 2888.669 & 0.45 045 133+10 -7
0125 3000.254 +0.21 0.86 130%10 -9
153 680.237 +0.15 0.38 36723 57
1S3 940.139 £ 0.10 0.31 312412 30
154 1172.990 +£0.05 0.13 295+10 24
155 1370.150 £ 0.10 -0.12 331%10 39
156 1521.470 £0.10 -0.57 395+12 50
157 1654.570 +0.05 -0.95 425413 53
158 1797.930 £ 0.05 -1.38 417411 38
1Sy 1961.820 £ 0.05 -1.94 424+14 44
1510 2146.020 £0.16 -2.43 405+24 26
1514 2974.390 £1.01 -1.44 284476 -9
117 1235.579 £0.48 -0.53 268 +30 8
115 1319.245 +0.22 -0.86 295442 38
115 1438.340 +0.22 -0.77 273433 21
1Ty 1585.095 + 0.22 -0.39 290434 41
115 1750.133 £0.10 -0.36 274%15 28
116 1925.114 £0.10 -0.50° 263+10 21
117 2102.955 £0.18 -0.85 284 +26 47
1Ts 2279.491 +£0.19 -0.76 270+£30 38
1Ty 2452.413 £0.23 -0.10 252+£13 24
253 1242.980 £ 0.15 0.79 455+39 39
254 1379.560 4+ 0.10 0.37 388+17 8
2S5 1515.370 £0.10 0.44 310417 8
256 1681.270 +0.06 0.43 246+10 8
257 1865.240 +0.23 0.28 214+10 2
2Ss 2049.650 £ 0.08 0.44 205+£10 7
259 2229.280 +£0.18 0.53 189%*11 1
2510 2403.160 £+ 0.20 0.23 188+10 7
25711 2572.660 £ 0.33 0.51 182+14 6
2512 2737.690 = 0.39 0.38 162+10 -11
2513 2899.990 4 0.20 0.10 165+10 -8
2T 2232.801 +0.27 1.99 235+31 30
2Ty 2379.093 +0.15 -0.74 233+18 24
PYA 2912.668 4 0.49 -1.30 279459 49
351 944.364 +0.10 0.42 906139 79
352 1106.480 £ 0.15 0.27 283+10 -82
356 2548.930 £ 0.32 -0.71 308 £31 33
357 2685.900 +0.21 -0.43 275+£22 6
358 2819.300 £ 0.11 -0.34 27114 8
359 2950.949 4+ 0.11 -0.64 264+13 5
451 1411.750 £+ 0.29 -0.88 36533 10
1S3 1721.580 +0.12 -0.72 472430 37
453 2048.130 £ 0.05 -0.83 52627 46
4854 2278.310 +0.12 -1.29  308+21 17
4S5 2411.18040.18 -0.25 283+26 0
552 2090.550 +0.15 -0.72 320+%10 2
553 2168.760 £ 0.05 -0.90 320%10 28
554 2379.250 £ 0.05 -0.27  552+20 63
595 2703.550 £ 0.06 0.20 570+£33 67
596 3011.380 £ 0.05 0.69 578+22 72
651 1983.330 £ 0.36 2.95 293+29 -356
693 2821.860 = 0.10 0.14 495+27 68
851 2872.600 +0.10 -0.76 999 £ 83 70

aMinimum frequency uncertainty is set to 0.05 pHz.
PMinimum @ uncertainty is 5 for 0.5 modes and 10 otherwise. therefore, are often approximated using truncated inter-

tating aspherical Earth model have frequencies near to
the degenerate frequencies of the corresponding SNRAI
Earth multiplets, but their eigenfunctions are linear
combinations of those of all the SNRAI modes. The
expansion coefficients of these linear combinations are
components of the eigenvectors of an interaction matrix,
Z, with elements:

Zrtie = DOt mme + 3 Twrs iy - (3)

s,t

Modal frequencies are determined from the eigenvalues
of this matrix. Each element of Z describes the inter-
action, or coupling, of a pair of normal modes through
aspherical structure. We call coupling of modes within
a SNRAI Earth multiplet (k = k') self-coupling, while
cross-coupling refers to coupling between modes of dif-
ferent SNRAT multiplets (k#k').

The D term of equation (3) includes multiplet degen-
erate frequency and the effects of multiplet spacing and
of the Earth’s rotation and ellipticity. The I' factors
are analytic functions that result from the geometry of
the spherical harmonic basis functions. These factors
multiply structure coefficients of the form

TE

AT O(Smi(r)‘Ms(kk’)(T)T2d7'+zhistd(kk’)7',2iy (4)
d

with structural kernels, M(r)=[K(r), M (r), R(r)], and
boundary factors, By, that are known functions of the
radial eigenfunctions of the spherical Earth modes. Struc
tural perturbations and kernels also can be expressed as
functions of v;, vp, and p, as is the case for the kernels
shown on Plate 1.

The complex structure coefficients are linear func-
tionals of aspherical structure which summarize the
impact of aspherical structure on the modes k& and
k'. The real and imaginary parts of degree s = 0
structure coefficients are related to perturbations to
the multiplet degenerate frequency and attenuation, re-
spectively, predicted by the SNRAI reference model
and are functions of spherically symmetric elastic and
anelastic structures. Under the spherical harmonic nor-
malization we employ, structure coeflicients have units
of frequency, and ¢;t = (=1)’c*!. In several other
studies [e.g., He and Tromp, 1996], structure coeffi-
cients for self-coupling are reported in the dimension-
less form (A%, BY) where ¢! = (—1)!v/2mw™f (AL — iBt)
for t > 0, ¢t = v2rwrt(All + iBI*)) for t < 0 and
& = VAnwrTA%. Wt is multiplet degenerate fre-
quency (in units of mHz or uHz), or the average fre-
quency of a pair of coupled multiplets. The above the-
ory has been presented in full by Woodhouse and Dahlen
[1978] and Woodhouse [1980].

The strength of the impacts of modal couplings on
seismic spectra varies inversely with the frequency dif-
ference between the singlets. Normal mode spectra,
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Figure 3. Sample comparisons of low-frequency nor-
mal mode spectra of data and synthetic seismograms.
(a) Data amplitude spectrum from the IDA station ALE
in Alert, Northwest Territories, after the deep Boli-
vian event of June 6, 1994, and the spectrum predicted
by the recent Harvard model MK12_ WM13 [Dziewon-
ski and Su, 1995]. (b) The amplitude of the difference
between these two complex spectra. In this example,
which is typical of high signal-to-noise records, many
multiplet peaks are misfit by more than 20%. (c) The
amplitude of the difference between the data and a syn-
thetic spectrum constructed using the structure coef-
ficients reported here. The largest amplitudes of the
residuals in this case are nearer to the 10% level.

action matrices, in which it is assumed that only k=4’
terms in equations (3) and (4) are nonzero. This is the
multiplet self-coupling approximation, which has been
employed in most normal mode studies. More accu-
rate synthetic formalisms employ interaction matrices
in which both self-coupling and multiplet cross-coupling
(k # k') terms are computed for sets of two or more
multiplets closely spaced in frequency [e.g., Masters et
al., 1983; Park, 1986; Park and Gilbert, 1986; Masters,
1989; Resovsky and Ritzwoller, 1994]. Even for multi-
plets closely spaced in frequency, cross-coupling is not
always significant. The strength of coupling depends
not only on frequency spacing but also on geometric se-
lection rules and the relative attenuations and sensitiv-
ity kernels of the modes involved. In performing GSF
on multiplet groups, we employ only those couplings
which synthetic experiments show to be significant.
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Geometric selection rules, included in the I factors of
equation (3), determine which aspherical structures can
affect modal coupling. For each pair (k, k') of multiplets
the structural degrees that can contribute to coupling
are confined to | I —1' |[< s < (I +1'). Additionally,
for multiplet self-coupling, I' = 0 when s is odd, and
the structure coefficients depend only on even-degree
structures up to s = 2[. The use of the self-coupling
approximation has confined all previous normal mode
studies, with the exception of that of Resouvsky and Ritz-
woller [1995a], to estimates of constraints on only the
even degrees of aspherical Earth structure.

For spheroidal-spheroidal or toroidal-toroidal cross-
coupling, k # k' and I = 0 for (I+!'+s) odd. In the case
of the cross-coupling of spheroidal-toroidal multiplet
pairs, I' = 0 for (I +1' + s) even. For example, nonzero
structure coefficients of the overtone pair ;.55 —2S54 ex-
ist only for s = 1,3,5,7,9, and those for 4S54 —1T3 are

‘at s = 5,7,9,11. Structure coefficient estimates for

these types of cross-coupling, which have been obtained
only after the introduction of GSF [Resovsky and Ritz-
woller, 1995a], constitute the only normal mode con-
straints on odd-degree structures. Cross-coupling struc-
ture coefficients can also constrain even-degree struc-
tures. For example, coupling coeflicients of the multi-
plet pair 9.S1; —2S7 are nonzero only for even harmonic
degrees s = 4 through s = 18. In the 1.5 to 3.0 mHz
range the cross-coupling of fundamental multiplet pairs
of the form 0S1—0T(141) is relatively strong and is dom-
inantly produced by the Coriolis force.

Using the interaction matrix to describe the modes
of an aspherical Earth model, a synthetic seismogram
for a receiver at position rg is given by

ref

s(tp,t) = R-e'%t . Seltw™ | (5)

where, as in the work of Woodhouse and Girnius [1982],
R is a receiver vector combining instrument response
information with modal displacement eigenfunctions at
the receiver, while S is a product of the moment and
strain tensors at the source location. Equation (5)
is accurate only to zeroth-order in the eigenfunctions
and neglects first-order kinetic energy, Coriolis, and at-
tenuation effects on eigenfunction normalization [Park
and Gilbert, 1986; Lognonné, 1991; F. Dahlen and J.
Tromp, Free Oscillations of the Earth, text in prepara-
tion, 1997]. The effects of this approximation are dis-
cussed further in section 3.1.

2.2. Regressions for Structure Coefficients

In GSF, structure coeflicients are estimated by lin-
earizing their effect on the data. The spectral residual
of record j, produced by estimates of the coefficients
after n — 1 iterations, is Asi™ (w;) = 88 (w;)—s5" ™" (wi)
for each discrete frequency (w;) in a window including
the multiplet group being analyzed. Gaps and edits of
the data time series are included in the synthetic time
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sensitivity kernels normal mode splitting functions
AL (R (uHz)
observed model predictions
< 60 = . 512 WM13
—=—=—4———cmb
———-4———ich
-16.56 16.56 -16.67 . 16.67
_ V o0
——————— cmb
———j————ieb R
-30.35 30.35 -15.49 15.49
~ 670 2S11
— — — cmb
degrees
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— — — ich ‘
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- 870 .
cmb
— — — ich

-13.056 13.05 -12.53 12,53

N 0517 = 2811 g

———=F———ich

-11.11 111 -5.55 5.55

Plate 1. Generalized splitting functions from GSF estimates of self-coupling and cross-coupling
structure coefficients. Also displayed are the splitting functions predicted by whichever of mantle
models SH.10c.17 or S12.-WM13 best agrees with the estimates. To the left are normalized kernels
indicating the sensitivities of the multiplets to lateral variations in vs (thick solid lines), v, (thick
dashed), and density (thin solid) as functions of depth. Note that §S; exhibits an anomalous
splitting function typical of multiplets sensitive to inner-core anisotropy.
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Plate 1. (continued)
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Plate 1. (continued)
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Intermodel correlations for two generations of mantle models expressed in terms of

confidence levels (%) [Eckhardt, 1984] as functions of depth at structural degrees 1-8. Models
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series before data and synthetics are transformed and
compared in the frequency domain.

The structure coefficients of the next iteration are
given by CZ((TI:L) = i((Zk 1)) +dc ki,), where the perturba-

tions are estimated using the ﬁrst order approximation

95 ( (n)
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The right side of equation (6) is broken into separate
sums over perturbations to the self-coupling and cross-
coupling structure coefficients of the multiplets targeted
for analysis. The structure coefficients for self-coupling
are referred to with a single multipet index k. We com-
pute the partial derivatives of equation (6) with numer-
ical finite differences.

Equation (6) is equivalent to a matrix equation of the
form As(™ = A(™ . 5¢(™ | The residual vector, As(™,
has an element for each frequency of each spectrum,

and the perturbation vector, 6c("), has an element for
each self-coupling and cross-coupling structure coeffi-
cient. A is the matrix of partial derivatives. In
practice, the regressions employ a row weight, w;, as
described in section 3.3. These row weights become the
nonzero elements of a diagonal matrix, W, that mod-
ifies the matrix equation. With iteration indices now
suppressed, equation (6) becomes

W -As=W-A-dc. (7)

WA is referred to as the regression matrix. For each it-
eration of GSF, the singular value decomposition (SVD)
of the regression matrix is used to find the perturbation
estimates according to

fc=V-A1.-UT-W-As. (8)

W - A is decomposed by the rectangular matrix U, the
square matrix V, and the diagonal matrix of singular
values, Ap; = OpgAp. The stability of the algorithm is
enhanced by normalizing the square of the Euclidean
norm of each column of W - A [Lawson and Hanson,
1974]. For a regression to be considered converged; we



792

have required that the coefficients estimated in the last
three successive iterations exhibit convergence through
correlation with better than 99% confidence and ampli-
tude differences of less than 2%.

. With sufficient data, theoretical errors and noise sig-
nificantly bias only the amplitudes of coefficients of
the highest structural degrees estimated (see section 3).
Since it is our practice to specify regressions to higher
degrees than we report, the only damping applied in
GSF regressions is singular value truncation, which oc-
curs for all singular values A such that Agax/A > 20. Es-
timates are not reported when truncation is required for
more than 5% of the singular values for the specified co-
efficients. The starting model for most GSF regressions
is PREM [Dziewonski and Anderson, 1981]. With the
truncation and weighting that we use, the regressions
usually converge within a dozen iterations. Regressions
which use the predictions of various aspherical models
as initial structure coefficient estimates generally con-
verge to the same final estimates within the reported
uncertainties. In the frequency band we consider, re-
gressions for the anomalous multiplet 355 are the only
exception to this rule.

GSF regressions provide structure coefficient esti-
mates for each targeted self-coupled multiplet and cross-
coupled multiplet pair. These coefficients may be dis-
played in map form using generalized splitting func-

tions:
Fer (0,8) = > chiun Y2(0,0) - 9)
s,t

This is a generalization of the self-coupling splitting
functions defined by Giardini et al. [1987]. These func-
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tions, which have units of frequency (pHz), are the nor-
mal mode analogue of surface wave phase velocity maps
and display the structure of the Earth under each point,
averaged by the depth sensitivity kernels of the multi-
plets in question. Plate 1 displays several estimated
splitting functions.

2.3. New Capabilities of GSF

By incorporating the effects of cross-coupling, GSF
improves on traditional spectral fitting by yielding bet-
ter fits to normal mode spectra, more accurate structure
coefficient estimates, and estimates of several new types
of structure coefficients. Many normal mode multiplets
appear in clusters such as the group 3Ss-0718-0517-2 511 -
Figure 5a shows that each of these multiplets is notice-
ably expressed in the data and that the overtones under-
lie the fundamentals. Figure.5b demonstrates the spec-
tral signatures of the Coriolis coupling between ¢T1s and
0517, the coupling of this pair through (even-degree) as-
pherical structure, and the structural coupling between
0517 and 2S7;. Each effect is significant, especially rel-
ative to the strength of the overtone signals suggested
by Figure 5a, and the inclusion of each improves the fit
to the data.

Cross-coupling also has a significant effect on struc-
ture coefficient estimates. Figure 6 illustrates the re-
sults of a synthetic experiment in which spectral fitting
without coupling is applied to synthetic spectra which
incorporate Coriolis coupling. The impact of Coriolis
coupling on estimates of degenerate frequency, @), and
t = 0 (zonal) coefficients can be approximated [Smith
and Masters, 1989a,b], but as Figure 6 demonstrates,
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Figure 6. Input and estimated structure coefficients
for a synthetic experiment. Input synthetics incorpo-
rate Coriolis cross-coupling of ¢S10-0711 and 97T16-0515,
while output estimates are made with regressions that
do not incorporate cross-coupling. The plotted coeffi-
cients are ordered, left-to-right, (10 X dw), (10 X da),
9, Re(cd), Im(c}), Re(c3), Im(c3), <Y, ..., Im(c}). Inputs
and outputs differ as much for several nonzonal coeffi-
cients (azimuthal order ¢ # 0) as they do for frequency,
attenuation, and ¢t = 0 coefficients.

failure to include Coriolis coupling in spectral fitting
regressions which fit amplitude and phase simultane-
ously can also produce significant bias in nonzonal co-
efficients for strongly coupled fundamentals [Resovsky
and Ritzwoller, 1995b]. Cross-coupling through aspher-
ical structure produces similar effects.

In general, we observe that the incorporation of sig-
nificant couplings improves the internal consistency of
structure coefficient estimates for similar multiplets,
and agreement, or external consistency, between esti-
mates and the predictions of reliable models. This be-
havior is demonstrated in Table 3 and Table 4, using
estimates of ¢T1s, 0517, and 2511 self-coupling struc-
ture coefficients made with four regressions: (Trial 1)
without coupling; (Trial 2) with only Coriolis coupling;
(Trial 3) with Coriolis coupling and specified structural
coupling between ¢S517 and 2S511; and (Trial 4) with
these couplings plus specified structural coupling be-
tween o115 and ¢S17. These trials are performed using
the same data set employed in our final GSF regressions
for these multiplets.

Table 3 displays internal consistency using lateral cor-
relations of the estimated ¢T1s, 0517, and 2S5 split-
ting functions with those for adjacent multiplets of the
respective mode branches: 717 and ¢T1g, 0516 and
0518, 2510, and 2S12. The incorporation of each ad-
ditional form of coupling improves the overall “along-
branch” correlation for each of the three multiplets and
usually improves correlation at each individual spheri-
cal harmonic degree for each multiplet. Table 4 com-
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pares the estimated structure coefficients to predictions
of model SH.10c.17, using splitting function difference
ratios which are the amplitude of the difference of es-
timated and predicted splitting functions, divided by
the amplitude of the model splitting functions. Over-
all difference between our estimated splitting functions
and those predicted by model SH.10c.17, as well as dif-
ferences at most individual harmonic degrees for each
splitting function, are smaller for regressions which in-
corporate more coupling.

In earlier spectral fitting studies, only the first term
on the right of equation (6) was employed in the regres-
sions, so that only the self-coupling (k' = k) structure
coeflicients were estimated. This approximation yielded
constraints on only even-degree aspherical structures.
GSF estimates of cross-coupling structure coefficients
provide the first normal mode constraints on odd-degree
aspherical structures. Plate 1 includes examples of esti-
mated odd-degree splitting functions. Both odd- and
even-degree cross-coupling coefficients possess unique
depth dependencies, since the integral kernels for a
cross-coupled multiplet pair are hybrids of those for the
self-coupling of the individual multiplets in the pair.
Plate 1 displays plots of such hybridized kernels for
0517-2511, 358-653, 554-2T4, and 255-156.

We have shown that the incorporation of multiplet
cross-coupling is essential to refining structure coefli-
cient estimates for Coriolis-coupled fundamental mode
multiplets between 1.5 and 3 mHz. These multiplets
are well excited and overlap most overtone multiplets
within the 1.5-3 mHz spectral band. For this reason,
accurate estimates of structure coefficients, particularly
those above degree 4, for most overtones in this band

Table 3. Cross-Coupling and Internal Consistency

Along-Branch Correlation? %

Modes Degree Trial 1® Trial 2 Trial 3  Trial 4
oT1s 2 99.0 99.5 99.0 99.1
4 83.0 76.4 86.9 78.7
6 78.7 78.2 82.4 85.7
8 49.4 61.1 65.4 72.7
all 83.0 84.4 87.5 87.8
0S17 2 97.6 99.8 99.8 99.8
4 93.7 95.7 95.3 93.9
6 80.5 90.0 91.9 92.6
8 73.2 80.5 84.6 84.5
10 72.4 78.1 78.2 78.9
12 55.7 64.4 74.9 75.9
all 88.6 92.6 94.2 94.5
2511 2 96.1 98.7 99.0 99.0
4 86.3 81.4 87.4 89.7
6 74.3 80.0 86.8 85.4
8 40.6 53.3 57.5 55.6
all 81.0 85.0 88.3 89.2

@Average of correlations with two adjacent multiplets.
Trial regression index, see section 2.3.
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Table 4. Cross-Coupling and External Consistency

Regression Estimates Versus Model®
Difference Ratios®

Modes Degree Trial 1° Trial 2 Trial 3 Trial 4
oT1s 2 0.42 0.49 0.47 0.49
4 0.81 0.74 0.54 0.79

6 1.52 1.41 1.44 1.13

8 2.45 1.93 2.13 2.16

all 0.88 0.82 0.81 0.78

0S17 2 0.32 0.16 0.19 0.18
4 1.23 0.84 0.83 0.79

6 1.62 1.38 1.35 1.20

8 1.82 1.32 1.19 1.23

all 0.61 0.44 0.43 0.41

2511 2 0.49 0.40 0.37 0.27
4 0.50 0.89 0.66 0.70

6 1.99 1.38 1.33 1.33

8 2.58 2.46 2.22 1.70

all 0.95 0.82 0.74 0.66

2Predictions from model SH.10c.17.
b [RMS (estimated-model)]/[RMS model].
‘Regression index, see section 2.3.

can be obtained only if the signal of the fundamental
modes is well fit. With GSF, we have retrieved the first
structure coefficient estimates for several overtone mul-
tiplets (e.g., 257, 289, 2511, 356, 357, 651, and 8SI) and
have extended and refined sets of coefficient estimates
for other overtones.

GSF may also be employed in the simultaneous es-
timation of structure coefficients and corrections to
source parameters. As discussed in section 3.1.3, this
capability has been used to obtain new moment esti-
mates for the largest events in our data set. GSF has
the additional, as yet unexploited, capability to esti-
mate the structure coefficients for aspherical anelastic
structure.

3. Issues of Precision and Accuracy

Spectral fitting has been generalized not only to ex-
tend the capabilities of the analysis of normal mode
data but also to insure that structure coefficient es-
timates are accurate and precise enough to be used
in refining 3-D Earth models. Certain theoretical er-
rors, covariances in regression matrices, and seismic
noise produce biases and uncertainties in GSF esti-

mates. We have sought to reduce some of the most
significant sources of error, to reduce covariances, and

to improve signal-to-noise ratios (SNR). Our coefficient
assessments (section 4.3) and error analyses (section 5)
attempt to describe and quantify the remaining inaccu-
racies and imprecision.

3.1. Reducing Theoretical Error

Theoretical errors result from the use of inaccurate
synthetic formulations, the effects of structures unspec-

ified in the regressions, and errors in source and receiver
information. Of these, errors from unspecified struc-
tures are particularly important because there are in-
sufficient data to permit stable regressions for the struc-
ture coefficients of all the structures to which the modes
in most multiplet groups are sensitive.

3.1.1. Cross-coupling effects. The incorpora-
tion of cross-coupling in GSF has allowed us to reduce
errors, such as those shown in Figure 6, that can be in-
troduced by Coriolis coupling. The experiments which
are documented in Tables 3 and 4 have shown that GSF
also reduces theoretical errors caused by unspecified
cross-coupling through aspherical structure. This im-
provement is particularly important when it is caused
by structures at the lower degrees (s = 1 through 6)
that are expected to dominate the spectrum of man-
tle heterogeneity [Su and Dziewonski, 1991]. Examples
include degrees 1, 3, and 5 coupling of 554-274 and de-
grees 2, 4, and 6 coupling of ¢S11-0712-

3.1.2, Unspecified degrees of structure. In
performing GSF, we also seek to reduce theoretical er-
rors resulting from unspecified structures, particularly
structures of degrees higher than those specified. Ta-
ble 5 demonstrates the impact of such structures. In
this synthetic experiment the “input” data are synthe-
sized using the self- and cross-coupling structure co-
efficients through degree 36 for ¢Tis, 0S17, and 2511
from a test model. This model consists of degrees 1-
16 of S16B30 and a threefold to tenfold amplification
of degrees 17-36 structure from model RG5.5 of Zhang
and Tanimoto [1991]. The source and receiver distribu-
tion in the synthetic data is the same as for regressions
performed on real data for these multiplets. GSF is

Table 5. Effects of Higher Degree Unspecified
Structure

Estimated Splitting
Functions Versus Inputs

Modes Degree Correlation, % RMS Ratio®

VAT 2 99.84 0.952
4 98.23 0.918

6 98.02 1.095

8 78.48 0.966

10 74.39 1.638

0S17 2 99.97 1.009
4 98.77 1.106

6 96.62 1.070

8 92.88 1.215

10 89.55 1.034

12 81.06 1.276

14 50.56 2.034

2511 2 99.96 1.087
4 95.55 0.996

6 86.68 1.113

8 84.87 1.264

0S17-2511 6 98.73 0.973
8 94.08 1.180

@ [RMS amplitude estimated]/[RMS amplitude input].
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applied to the synthetic data, with only the tabulated
degrees specified, to obtain the output coefficient esti-
mates. The comparisons of Table 5 show that both the
geometry and the amplitude of estimated splitting func-
tions can be appreciably affected by unspecified higher
degree structure. This effect results from the coefficient
covariances inherent in GSF, as discussed in the follow-
ing subsections, and is dominately manifested in the
highest degree structure coefficients estimated for each
multiplet and coupling pair.

Therefore, to reduce errors from unspecified higher-
degree structures, we specify regressions to the highest
degrees possible. In particular, we specify coefficients
for structures of degrees higher than those we report.
If we report coefficients through degree 10, regressions
have been specified at least to degree 12 and preferably
to degree 14 for that multiplet. Exceptions occur for
fully specified multiplets such as 453, which is sensitive
only to degrees 0-6, or for multiplets such as ¢S4 which
are only weakly sensitive to aspherical structure.

3.1.3. Source and receiver errors. We account
for some of the theoretical error introduced by incorrect
source solutions by using GSF to estimate source mo-
ments for the largest events used. These estimates are
plotted in Figure 7. Future applications of GSF may
specify other source parameters. Errors in reported in-
strument responses are generally difficult to identify,
but we are able to find and correct sign errors and dis-
card data with anomalous amplitudes.

3.1.4. Other theoretical errors. Among other
potential sources of theoretical error in the present form
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Figure 7. (top) Moment estimates from generalized

spectral fitting. Event indices refer to Table 1. The mo-
ment estimate for each event is the average of the results
from regressions for multiplet groups for which at least
10 recordings from that event were employed. (bottom)
Moment estimates for the 1989 Macquarie Ridge event
made using ¢S branch multiplet peaks.

of GSF are first-order corrections to eigenfunction nor-
malization [e.g., Lognonné, 1991], aspherical anelastic
structures [Resousky and Ritzwoller, 1992, 1994], and
aspherical anisotropy. The size and relative importance
of these effects, as well as those of source and receiver er-
rors, may vary greatly from multiplet to multiplet. We
are currently modeling some of these variations in order
to inform future modifications of the GSF method.

3.2. Reducing Covariances

The number of distinct seismograms employed in
GSF is important in determining the number of struc-
ture coefficients that can be retrieved and reported with
reasonable confidence. The signal in each seismogram is
determined by the source and receiver vectors of equa-
tion (5). For a multiplet of degree £, all of the informa-
tion about the Earth from a single event is contained in
the 2 + 1 time series e*%t - S. Irrespective of how many
receivers sample these time series, 2£ + 1 time series are
inadequate to determine much about the structure of
the Earth, for realistic signal-to-noise levels. Thus the
retrieval of information about structural degrees above
s = 4 usually requires the use of a multiplicity of events,
each contributing 2£ + 1 time series. Normal mode in-
vestigations which employ data from only one or two
strong events can usually obtain reliable estimates for
only even degree structure coefficients through degree 6
at most, as demonstrated by He and Tromp [1996].

The covariance matrices that result from GSF demon-
strate the advantages of using data from dozens of large
events. When SVD is employed, the estimated covari-
ance matrix is

1
Cz'j = Z '/\—%'V%pv}'p ’ (10)
p

where V;; and A; are defined by equation (8) and the di-
agonal elements of C provide estimates of the coefficient
variances. Because the covariance matrix of equation
(10) does not account for covariances with unspecified
structures and other theoretical errors, the standard es-
timates of variance and covariance from equation (10)
have repeatedly proven to be inadequate for explain-
ing the observed inconsistencies in normal mode ob-
servations [e.g., Ritzwoller et al., 1988]. However, the
estimated covariance matrix is a useful tool for under-
standing certain aspects of inaccuracy and imprecision
in GSF estimates. A reliable regression will exhibit a
covariance matrix which is approximately diagonal, in-
dicating that structure coefficient estimates are nearly
independent; small coefficient variances, indicating that
the corresponding structures are well-sampled by the
data; and a low matrix condition number, indicating
that the coefficient estimates are stable. Matrix condi-
tion number is defined as the ratio of the largest to the
smallest singular value.

We have examined the properties of covariance matri-
ces for two sequences of trial regressions with data sets
comprising increasing numbers of records and events.



796

These regressions target the isolated multiplet 1.Ss and
the group of coupled multiplets ¢T18-0S17-2511- The
1Ss regressions estimate the 92 structure coefficients of
even degrees 0-12. The ¢T15-0517-2511 regressions es-
timate 264 even degree coefficients for self- and cross-
coupling. Figure 8a is a plot of matrix condition num-
ber for these regressions. Using the event numbering
of Table 1, we indicate which events supply the addi-
tional records for each regression in the two sequences.
The first several events included are those which provide
the largest quantity of high SNR recordings: event 15,
Macquarie Ridge, 5/23/89; event 29, Northern Bolivia,
6/9/94; event 30, Kurile Islands, 10/4/94; event 32,
Northern Chile, 7/30/95. The inclusion of new events
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Figure 8. (a) Matrix condition numbers of the sin-
gular value decompositions of GSF for a series of re-
gressions employing increasing numbers of stations and
events to estimate structure coefficients of ;55 and of
0T18-0517-2511. The horizontal axis gives the number
of records used and the labels indicate the events which
provide each set of additional records. Event numbers
refer to Table 1. (b) Root-mean-variances for each of
these regressions. The circled numbers and letters mark
regressions selected for the plots of Figure 9.
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is consistently more effective at improving matrix condi-
tion than is the addition of new records from events al-
ready included. The condition number associated with
regressions employing a dozen or more events can be
as much as an order of magnitude less than that for
regressions using only the largest two or three events.
In Figure 8b, similar behavior is observed for “root-
mean-variance”, a summary of the estimated coefficient
\/2=;Cjj/J, where J is the
number of specified structure coefficients.

In Figure 8b, we use the numbers 1-6 to mark six
1Sg regressions for which we examine covariances with
Figure 9a, and letters A-F to indicate the six ¢T1g-¢S17-
2511 regressions with covariances displayed in Figure
9b. The quantity plotted in Figure 9 for each spec-
ified coeflicient is “root-mean-covariance”, defined by

g; = \/z#j Ci;/(J —1). Increasing the number of

events consistently reduces covariances more effectively
than simply including more seismograms in the regres-
sions. Again, nearly order-of-magnitude reductions can
be achieved. At the same time, and just as signifi-
cantly, the addition of events yields increasingly diago-
nally dominated covariance matrices. This is illustrated
by Figure 10, where we use a gray-scale to plot elements
of normalized covariance matrices, C’, defined by

variances defined by & =

Cy
(CCj)1 /2

In addition to the effect of using diverse sources, Fig-
ure 10 illustrates two other important characteristics
of the estimated covariance matrices. First, with data
from only three large events, there is considerable co-
variance among all estimated self-coupling coefficients
for 1 5s. This implies that for 1 Sg and similar multiplets,
the results of using limited data to estimate degrees 0-
4 or 0-6 can be significantly biased by unconstrained
structures at higher degrees, especially the degrees 8-12
structures that our expanded data set now permits us
to specify. The inclusion of data from many events is
therefore essential for minimizing the impact of theo-
retical errors from unspecified higher-degree structures,
whether few or many coefficients are specified. This has
been confirmed by several experiments [Ritzwoller and
Resovsky, 1995a].

Second, even when a large number of events are
employed, several significant covariances remain. The
banded features evident in Figures 10c and 10f indi-
cate three dominant types of persistent covariances: (1)
covariances between coefficients of the same multiplet
and harmonic degree (s) with azimuthal orders ¢ and
t' differing by 2; (2) covariances between coefficients of
the same multiplet with s and s’ differing by 2 or 4;
and (3) covariances between coefficients with identical
structural indices ((s,t) =(s',t')) from a pair of Coriolis-
coupled multiplets. These covariances motivate further
expansion of the data set but may be ultimately irre-
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coefficients ordered as in Figure 6.

ducible, indicating that the distributions of large earth-
quakes and current seismographic stations are not ad-
equate to resolve trade-offs between estimates of the
covarying coefficients. It should be noted that the sec-
ond type of persistent covariance confirms our obser-
vation that errors caused by unspecified higher-degree
structures are largely confined to the highest degrees
specified, as described in section 3.1.2.

3.3. Reducing Noise and Weighting Data

Many of the long-duration seismograms we employ
are contaminated by strong tidal signals, large glitches,
events near to individual stations, and daily calibration
pulses. In assembling the data, we routinely remove
tidal signals, by fitting tidal amplitudes at known tidal
frequencies, and edit out other contaminating signals.
This processing can greatly improve the signal-to-noise
ratio in the data, as demonstrated by Figure 11. Con-
siderable “random” seismic noise can remain, especially
on recordings from horizontally oriented instruments.
For each multiplet, several stations are near nodes of the
oscillation pattern, so that modal amplitudes are near
the ambient noise levels. For this reason, in addition to
detiding and editing all data, we cull the data for each
multiplet group by visually inspecting the appropriate
spectral window of each seismogram and discarding low
SNR records.

Convergence of GSF regressions is enhanced and pre-
cision is improved by using a modified form of the
weighting (equation (7)) employed by Ritzwoller et al.
[1988]. For each seismogram (index j) and for the

The multiplets are ordered as indicated, with

spectral window about a given multiplet group, the
RMS residual after each GSF iteration is /U5, where
v = [Zfsl(Asj (w;))I] is the variance of the residual.
The diagonal elements of the weighting matrix W are

w; = £} /\/55,

where f; = 1 — [v;/ Y, 8%a(wi)]*/? is the fractional
RMS misfit and values for 8 range from 0.25 to 2.0.
In order to avoid assigning excessively high weights to
extremely high SNR records from recent large events,
we cap the weights at some small factor (< 5) of the

median of 1/,/v;.

(12)

4. Results of GSF

4.1. Summary of the Regressions

We have analyzed a total of 90 multiplets below 3
mHz of which 59 are spheroidal and 31 are toroidal.
These multiplets and the maximum degree of the struc-
ture coefficients reported are indicated in Figure 2. In
addition, we have been able to estimate and report
structure coefficients for the structural coupling of 25
multiplet pairs. These include degree 1, 3, and 5 co-
efficients from 1.55-254, 255-1.56, and 5S54-2T4; degree 5
coefficients from 259-0514, 2510—455, 35’8'653: and 454—
2T3; degree 2 coefficients from ;53-351, 357-555, and
0510-0111 through 9S20-0T5%1; degree 4 coefficients from
153-351, and S11-257; and degree 6 coeflicients from
0T12-257, 0S11-257 and ¢S17-2511-
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spectral fitting regressions for 92 1Ss interaction coefficients
3 events, 114 records (c)

20 events, 280 records

(a) 1 event, 54 records (b)
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Figure 10.
shown in Figure 8. The darker boxes indicate matrix elements with larger amplitudes.
Even degrees 0-12 structure coefficients of 1 Sg, ordered left-to-right and top-to-bottom starting
with real and imaginary parts of degree 0. (d)-(f) Covariances for the self-coupling of 2531 are in
the top left, followed, moving toward the lower right, by those for ¢T1s and ¢S17, as in Figures
10a-10c. Covariances among the cross-coupling coefficients of ¢S517-2S511 are in the bottom right
corner.

Plate 1 displays a sampling of the generalized split-
ting function maps that result from our coefficient es-
timates. For comparison, each splitting function is
displayed with a prediction from one of two models,
SH.10c.17 or S12.WM13. Plate 1 demonstrates sev-
eral notable features of the new catalogue. Splitting
functions retrieved for multiplets with similar sensi-
tivities to Earth structures, like o713 and 2571, are
well correlated geographically. Splitting functions es-
timated through degrees 8, 10, or 12, including those of
0517 and 1S53, show good correlation with model pre-
dictions. This is also true of splitting functions for
cross-coupling, including those of low odd degrees (555-
156), those of higher even degrees (0S17-2511), those
from the coupling of spheroidal and toroidal overtones
(554-2T4), and those from the coupling of mantle- and
core-sensitive multiplets (3Ss-¢S53). Estimated splitting
functions for multiplets sensitive to shear velocity in
the transition zone, like 0517, 0Z1s, and 2571, consis-
tently display larger amplitudes at degrees 6 and 8 than
do model predictions. Splitting functions for multiplets
sensitive to shear velocity in the core display the famil-

The normalized covariance matrices for several of the regressions of the sequence

(a)-(c)

iar, highly axisymmetric signal of inner-core anisotropy
le.g., Woodhouse et al., 1986; Tromp, 1993, 1995; Um et
al., 1994], which does not appear in the mantle model
predictions. The catalogue of new structure coefficient
estimates and the associated uncertainties is available as
an electronic supplement.! At present, the catalogue,
together with the splitting function maps, sensitivity
kernels, normalization information, and other relevant
material, is available at internet site
abdu.colorado.edu/geophysics/nm.dir/nm.html.
Seventy-seven regressions were performed to obtain
these estimates. For these regressions, Table 6 lists the
multiplets and coupling pairs targeted, together with
the highest structural degree specified for each. It also
documents the total number of specified coefficients,
the quantity of events and recordings employed, and

1Measurements and related information may be obtained on
diskette or via Anonymous FTP from kosmos.agu.org, directory
APEND (Username=anonymous, Password=guest). Diskette
may be ordered from American Geophysical Union, 2000 Florida
Avenue, N. W., Washington, DC 20009 or by phone at 800-966-
2481; $15.00. Payment must accompany order.
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Figure 11. Example of editing to produce reliable
data. The large glitches in the original time series pro-
duce a large offset and considerable noise in the spec-
trum. When these are removed by editing, overtone
peaks such as the lower mantle 5S multiplets become
observable.

nearby multiplets included in the regression synthet-
ics. Note that 13 of the regressions specify spheroidal-
toroidal pairs coupled through the Coriolis force (9.5¢-
01’10 through ¢S551-0795) and that these multiplets are
included in another 11 regressions.

4.2. Signal-to-Noise and Misfit

The most import characteristic of GSF regressions,
aside from the nature of the structure coefficient esti-
mates that result, is the extent to which they reduce
that portion of the misfit between synthetic seismo-
grams and the data not attributable to seismic noise.
The average signal-to-noise ratio (SNR) in the data
set we employ is typically in the 10:1 to 20:1 range,
which is commensurate with the expected size of mis-
fits resulting from theoretical error. However, theoreti-
cal errors are expected to manifest as perturbations to
modal peaks, so seismic noise can be measured by ob-
serving spectral bands that are devoid of normal mode
peaks. For each seismogram in our data set and for
each time series length employed, we estimate a spectral
noise level using RMS spectral amplitude averaged over
a set of such bands. For vertical component records we
use four bands (1.261-1.335, 1.435-1.480, 1.895-1.940,
2.605-2.645 mHz) and for horizontal component records
we use five bands (1.265-1.305, 1.445-1.470, 1.886-1.915,
3.029-3.054, 3.125-3.150 mHz). We then define SNR for
each multiplet as the ratio of peak multiplet amplitudes
to the estimated noise levels. '

These SNR estimates are particularly useful for plot-
ting measures of residual misfits resulting from GSF re-
gressions. To quantify misfit in the spectral bands used
to analyze each multiplet group, we employ misfit ratio
(MR). This quantity is defined by
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(13)

v — (zl_ll () — s (wz-)f),
>i=1 5% (wi)

where s(w;) is the data spectrum for a given record and
s'(w;) is the corresponding synthetic spectrum, com-
puted with the estimated structure coefficients. Phase
and amplitude contributions to the misfit are exam-
ined separately, using phase misfit and amplitude mis-
fit. Phase misfit is the average, across the frequency
band analyzed, of the difference between the phases of
the data and synthetic spectra. Amplitude misfit is the
average of the difference between unity and the ratio
of the amplitude of the synthetic to that of the data.
Figure 12 provides sample plots of these misfits against
log(SNR) for the multiplet group oT1s-0S17-2511-

In general, we have found that smoothed curves re-
sulting in least squares fits to such plots are closely ap-
proximated by quadratic curves which asymptotically
approach a minimum at high SNR. This is illustrated by
the curves shown in Figure 12. MR, phase misfits, and
amplitude misfits that result from seismic noise alone
are expected to decrease monotonically and asymptoti-
cally to zero. This is demonstrated by Figure 13, which
results from comparing synthetic spectra of ¢T1g-0S17-
2511 to otherwise equivalent spectra contaminated by
artificial noise at observed noise levels. For this reason,
the nonzero high SNR (HSNR) asymptotes of Figure
12 can be interpreted as expressions of the theoretical
error which are uncontaminated by seismic noise.

In Table 7, the fit to the data given by the estimated
structure coefficients is compared to the fits produced
by predictions from aspherical mantle models. The four
misfit statistics included are (1) MR averaged over all
records used in each regression; (2) HSNR misfit, which
is the asymptotic value of the quadratic curve fit to MR
versus log(SNR); (3) HSNR amplitude misfit, defined
similarly; and (4) HSNR phase misfit. For poorly ex-
cited multiplets the HSNR misfits can be difficult to
estimate accurately, and care has been taken to insure
that the reported misfits are robust.

Mean misfits and HSNR misfits provide significantly
different information about the regressions. Mean mis-
fits are related to the quantity minimized in each regres-
sion, and successful regressions should produce mean
misfits lower than those resulting from model predic-
tions. Mean misfits are also strong functions of the
average SNR of the data set used. Consequently, mean
misfits cannot meaningfully be compared between mul-
tiplets or across different data sets, since the noise con-
tents for different multiplets or different data sets may
differ. The HSNR misfits included in Table 7 are gener-
ally more useful statistics since they estimate quantities
that should be largely independent, of SNR. HSNR. mis-
fits are used as a tool for assessing the regressions, as
described in section 4.3, and to model the effects of the-
oretical noise, as in section 5.1.



Table 6. Regression Inputs

Index  Specified Specified  Highest = Number of Number Number of Number of Nearby
Multipets Cross- Degrees  Coefficients of Horizontal Vertical Multiplets
Coupling  Specified Specified Events Records Records
1 083 2 7 4 0 30
2 094 8 46 16 4 182
3 0Ss 8 46 23 9 345
4 056 8 46 25 57 495
5 057,253 8,6 75 18 0 287 oT7,1 11
6 0Ss 12 92 32 57 553 451,019
7 059,070 12,6 121 32 50 500 1Ty
8 0510,0T11  0S10-0T11 8,14,2 172 33 526 1036 4S2
9 oT12,0511, oT12-0511 8,14,8, 275 33 512 1018
287 0T12-257 6,6,6
0S11-257
10 0T13,05812  0T13-0512 12,16,4 260 24 434 835 651
11 0T14,05813  0T14-0513 12,16,4 260 24 421 818 552,117
QT15,2SQZ 0T15-0514 10,14, 273 33 503 992
12 27,0514 259-0514 8,4,7
13 0T16,0515  0T16-0515 12,16,4 260 33 521 1063
14 0T17,0816  0T17-0516 12,16,4 260 33 511 1027 119
15 0T13,0517, 0T18—-0517 12,16, 324 33 503 1001’ 356
2511 0S17-2511 10,4,8
16 0T19,0518  0T19-0518 10,16,6 248 33 510 978 357
17 0720,0S519 0T20-0510 12,16,6. 273 32 375 901
18 0520,0T21, 08S20-0T21 14,12 273 33 459 948 851,213
2513 ' 8,4
19 0521 16 154 25 0 634 1514,0T22,556
20 152 4 16 4 2 24
21 153,351 1S53-351 6,2,4 50 17 0 256 oTs
22 154 6 27 15 12 160
23 155,254 155-2.54 10,8,9 168 23 0 446 073
24 255,156 255-156 8,8,7 128 16 86 181
25 157 10 67 16 1 210
26 1S58 12 92 20 0 284
27 159 8 46 12 1 118 0T13-0512
28 1510 8 46 15 0 125 0T14-0513
29 1514 4 16 8 82 212 0521,0T22,556
30 2Ss 10 67 18 155 169
31 258 8 46 20 167 370 453
32 2510,455 2S10-4S55 8,8,7 118 20 143 301
33 2512 8 46 5 55 172 555,217
34 352 4 16 10 0 90
35 356 6 29 2 68 93 0T18-0517-2511
36 357,555 357-5Ss 6,8,2 80 17 7 215 0T19-0518
37 355,653 3S8-653 8,6,7 101 22 91 233
38 3Sy 6 29 4 39 54 1T12,1514,0721
39 451 2 7 2 12 66 0S8
40 452 4 16 2 64 113 0S10-0T11
41 453 6 29 20 96 357 2Ss
42 454,1Ts 4S4-1Ts 6,6,7 84 16 102 163
43 552 2 7 2 0 104 0T14-0513,1T7
44 553 6 29 17 93 166
45 554,574 5S4-2T4 6,4,7 81 22 61 394
46 556 10 67 9 0 182 0921-0T22
47 651 2 7 2 61 113 0T13-0512
48 851 2 7 5 0 132 0520-0T21,2513
49 0T 2 7 3 17 0
50 oTs 8 46 4 66 0 193-351
51 076 6 29 16 151 0
52 0T7,1 T 6,2 36 5 104 0 057,253
53 oT3s 6 29 12 151 0 1S5-254
54 YA 6 29 13 205 0 05s,255-156
55 0722 6 29 18 182 0 1514,0521,556
56 1T 2 7 2 66 0
57 1713 2 7 2 81 0
5 A
60 1Te 8 46 14 176 0
61 1T 6 29 22 417 0 552,0T14-0513
62 1Te 6 29 18 462 0 0T17-0516
63 2Ts 6 29 12 283 0 0520-0T21,2513
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Figure 12.  Variation of misfit with SNR in GSF
residuals. Misfit ratio, amplitude misfit, and phase

misfit are defined in section 4.2. Residuals are from
a comparison of the data subset employed in prelimi-
nary analyses of T18-0S17-2511 to synthetics computed
using the reported structure coefficients for these multi-
plets. The smooth “best fit” trends result from a least
squares fit which employs a quadratic (in log(SNR))
between SNR=3 and SNR=70, and a horizontal line
(asymptote) above SNR=70.

4.3. Assessing Regression Results

Because we seek to specify in the regressions as many
relevant structure coefficients as possible for each mul-
tiplet group, we have established a protocol for insuring
that regressions are not underspecified and for identi-
fying estimates which are sufficiently accurate to be re-
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ported. We require that reported estimates of structure
coefficients display both internal consistency, meaning
that coefficients of multiplets with similar sensitivities
to mantle structures should be similar, and external
consistency, meaning that coefficient estimates should
provide better fits to the data than do recent mantle
models, while exhibiting consistency with the predic-
tions of those models. We also confirm, whenever pos-

synthetic misfits for 0T13-0S12
1217 records, additive noise only
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Figure 13. Simulated variation with SNR of the

misfit between noise-free synthetics and synthetics con-
taminated by additive noise only. Noise-free synthet-
ics are made using gT}g-0S17-2511 structure coefficients
predicted by model S16B30. The additive noise synthet-
ics are noise-free synthetics perturbed at each frequency
by additive noise of random phase with RMS amplitude
matching the observed SNR of each real data record.
The best fit trends are computed as in Figure 12.



Table 7. Regression Fits

Target Mean Misfit HSNR Misfit  Amplitude Misfit, % Phase Misfit, deg
Multipets Model® GSF Model* GSF Model® GSF Model® GSF
053 0.51 0.50 - - - - - -
054 0.49 0.47 0.19 0.17 11.9 11.8 3.3 2.3
0Ss 0.42 0.39 0.12 0.10 8.0 8.6 2.2 1.6
056 0.42 0.40 0.11 0.09 8.0 7.2 3.1 1.8
057,253 0.46 0.38 0.30 0.16 141 12.6 4.7 3.4
0S8 0.40 0.37 0.22 0.14 11.0 8.4 5.9 3.7
059,070 0.38 0.33 0.18 0.12 11.6 10.2 5.4 2.3
0510-0T11 0.50 0.43 0.23 0.15 17.7 12.6 6.6 3.0
0T12-0S11-257 0.54 0.46 0.28 0.20 17.5 13.7 7.9 4.8
0T13-0512 0.49 0.46 0.28 0.26 19.2 19.3 7.7 6.7
0T14-0513 0.53 0.44 0.28 0.17 22.0 14.8 8.8 4.1
0T15-0514- 0.61 0.46 0.38 0.21 30.5 18.4 12.3 5.5
259,21
0716,0515 0.56 0.47 0.34 0.21 26.8 20.5 11.7 4.7
0T17,0516 0.58 0.46 0.35 0.21 28.1 20.1 11.2 4.7
0T18,0517,2511 0.61 0.48 0.37 0.25 30.4 19.3 10.4 5.5
0719,0518 0.61 0.47 0.38 0.24 30.4 18.1 10.2 5.9
0T20-0519 0.67 0.54 0.42 0.27 39.6 25.0 11.7 6.0
0530-0T21-2513 0.63 0.48 0.38 0.26 28.7 20.3 10.4 5.1
0521 0.59 0.50 0.36 0.28 31.2 22.8 9.7 74
152 0.49 0.47 - - - - - -
153-351 0.51 0.45 0.15 0.13 7.5 4.2 2.5 2.9
154 0.29 0.28 0.12 0.09 5.1 5.1 2.1 1.3
1S5-254 0.48 0.45 0.22 0.13 7.5 4.9 3.7 2.7
2S55-156 0.51 0.41 0.31 0.17 18.5 6.1 6.4 2.3
157 0.53 0.35 0.23 0.08 20.4 4.7 3.6 2.3
158 0.47 0.37 0.20 0.09 7.4 4.3 6.0 1.9
15 0.55 0.42 0.29 0.12 13.1 5.6 5.0 3.5
1S10 0.67 0.46 0.57 0.25 9.9 5.9 23.0 9.3
1514 0.71 0.68 0.36 0.31 30.8 25.6 9.7 7.9
256 0.45 0.39 0.17 0.14 12.0 12.2 4.3 1.8
258 0.49 0.45 0.17 0.13 11.5 10.4 3.8 2.9
2510,455 0.77 0.64 0.40 0.25 17.8 18.3 16.5 7.0
2512 0.72 0.71 0.50 0.48 314 32.2 13.8 13.5
352 0.94 0.48 - - - - - -
356 0.65 0.61 0.32 0.29 17.3 17.0 6.6 5.3
3S7-555 0.55 0.42 0.31 0.21 18.2 12.0 6.5 4.8
359 0.56 0.53 - - - - - -
358-653 0.86 0.43 0.73 0.10 48.5 9.7 324 2.9
451 0.38 0.38 0.19 0.17 19.2 14.7 5.1 5.4
452 0.50 0.50 0.26 0.27 20.7 19.5 7.4 6.4
4S3 0.63 0.59 0.28 0.14 12.0 7.6 7.2 3.0
4S54-1Tg 0.59 0.53 0.37 0.25 19.4 12.8 9.6 5.3
552 0.52 0.50 0.13 0.13 8.3 4.9 2.9 2.9
553 0.72 0.56 0.33 0.09 13.9 4.6 6.0 1.6
5854-2T4 0.61 0.46 0.38 0.14 22.5 7.6 11.6 3.0
556 0.50 0.36 0.24 0.11 11.1 10.4 4.8 2.9
651 0.70 0.60 0.41 0.27 23.1 16.0 10.8 54
851 0.69 0.58 0.58 0.33 31.6 21.2 18.4 8.9
0T 0.45 0.40 - - - - - -
oTs 0.44 0.39 - - ; - } ]
oTs 0.61 0.58 0.29 0.25 10.5 9.5 6.3 1.5
0l7,1T1 0.52 0.48 0.12 0.09 6.0 4.3 0.8 1.8
YL 0.51 0.49 0.20 0.17 5.9 8.3 7.0 6.8
oTo 0.43 0.45 0.16 0.16 114 12.5 2.4 5.9
0T%2 0.63 0.58 0.32 0.31 31.1 32.6 3.5 7.0
1T 0.69 0.69 - - - - - -
\Ts 0.56 0.52 - - - - - -
1Ty 0.37 0.34 - - - - - -
1715 0.57 0.57 0.11 0.12 9.8 10.2 1.8 2.0
116 0.60 0.56 0.17 0.13 8.7 2.1 6.2 4.3
117 0.49 0.49 0.20 0.19 12.7 13.9 1.8 2.3
1Ty 0.46 0.45 0.21 0.20 16.6 16.6 4.5 3.6
2Ty 0.66 0.64 0.43 0.33 55.6 51.3 13.9 14.8

2Listed misfits are the lesser of the misfits produced by models S12.WM13 and SH.10c.17.
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sible, that the specification of structure coefficients for
cross-coupling or structures of degrees s > 4 improves
the consistency of other coefficients. In assessing fits
to the data, we employ the average and HSNR misfits
of Table 7. To address other issues of consistency we
use the lateral correlation and relative amplitudes of
splitting functions.

4.3.1. Internal consistency. A useful check of
the internal consistency of the estimated structure co-
efficients is the lateral correlation of splitting functions
along the same overtone branch, because modal sensi-
tivity to Earth structure tends to vary smoothly along
each branch (with certain known exceptions). The
thick solid lines in Figure 14 plot the confidence of
the geographical correlation between the estimated co-
efficients for multiplets of adjacent ! values along sev-
eral modal branches. Correlation confidence, as de-
fined by Eckhardt [1984], is useful for comparing corre-
lations at different harmonic degrees. Estimated struc-
ture coefficients along the overtone branches are usu-
ally correlated with better than 90% confidence. Ex-
ceptions are greatest when strong coupling occurs be-
tween pairs (e.g., 155-254, 156-255) or trios of multi-
plets (e.g., 0T12-0511-257, 0T15-0514-2.59, and o T15-0.517-
2S511). Reported coeficients exhibiting relatively weak
along-branch correlations, like those of degree 4 for mul-
tiplet 0710 and degree 8 of 4511, are generally assigned
larger uncertainties.

Further confidence in the results is established by ge-
ographic consistency between estimated splitting func-
tions of multiplets from different branches with similar
sensitivity kernels. The strong similarities of the degree
2-8 splitting functions of 9517, 9115, and 2511, shown in
Plate 1, are an example of such consistency.

4.3.2. External comsistency. As in the exam-
ple of Figure 3, synthetic spectra generated using GSF
structure coefficient estimates usually fit data better
than do synthetics constructed using recent mantle mod-
els. Table 7 documents misfit for each multiplet group
analyzed. In addition to providing misfit statistics for
the estimated coefficients, average and HSNR misfits
are listed for either S12.-WM13 or SH.10c.17, depend-
ing upon which model fits the data better for the spec-
ified mode group. In nearly every case, the estimated
structure coefficients provide better fits to the normal
mode multiplets than the predictions of either model,
both in an averaged sense and for HSNR data. The co-
efficient estimates usually fit both phase and amplitude
data better than the models. Preliminary investigations
suggest that the newer mantle models MK12_WM13,
S16B30, and SAW12D probably fit the these spectra no
better than the older models S12.-WM13 and SH.10c.17.

The thin lines of Figure 14 show the confidence of
correlation between structure coefficients predicted by
models S12.WM13 and SH.10c.17. The dashed lines
plot correlations between the estimated coefficients and
whichever of these two models best agrees with the esti-
mates. The most important characteristic of these plots
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Figure 14.  Correlation confidence levels for inter-

nal and external consistency checks of the GSF coeffi-
cient estimates. The along-branch trends (thick solid
lines) compare estimated structure coefficients of ad-
jacent multiplets on the same overtone branch. Also
shown are the correlations of the estimates to either
SH.10c.17 or S12.-WM13, whichever agrees better with
the measurements (dashed lines). Correlations between
these two models (thin solid lines) are displayed for
comparison.

is that the GSF estimates usually correlate with at least
one model better than the models correlate with each
other. Thus, while the new normal modal coefficients
differ substantially from model predictions, they are not
inconsistent with existing constraints on the Earth’s in-
terior structure.
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Figure 15 displays the primary difference between
model predictions and the GSF structure coefficients.
These plots show the root-mean-square (RMS) ampli-
tude of the coefficients as a function of structural degree
for both the models and our estimates. While both pre-

dicted and measured structure coefficients are larocest at

icted and measured structure coefficients are largest at
degree 2, the estimates are consistently larger than pre-
dicted coefficients at degrees 4, 6, and 8 of structure, es-
pecially for the ¢T" and 2S modes which are dominantly
sensitive to the upper mantle and transition zone. This
may imply a somewhat flatter, or whiter, spectrum of
heterogeneity within these regions of bht: Barth than
anticipated by the models. Such implications are dis-
cussed further in section 6.

4.3.3. New coeflicients and improved con-
sistency. The new normal mode catalogue includes
cross-coupling structure coefficients and many new es-
timates of coefficients at s > 4. These coefficients ex-
hibit internal and external consistency similar to those
of self-coupling coefficients at degrees 2 and 4. To es-
tablish confidence in s > 4 and cross-coupling coefficient
estimates still more firmly we note two additional char-
acteristics. First, we observe that regressions specifying
these coefficients generally improve the external and in-
ternal consistency of other estimates. Examples of such
observations for cross-coupling are documented in Ta-
bles 3 and 4 and by Resovsky and Ritzwoller [1995a).

degree 2 degree 4

oS branch
estimates

degree 6 degree 8

model SH.10c.1 model S12_WM13

—
T

1T "\ :
01015 %0 ‘
45T branch 1t

W
T

N
T

A IRCA
~ v//:,-;;""’/«:a‘” w3 E

—
T

\ /N

5 10 15 20
N \w""‘""

;S\bray

246810 2 4 6 8 10 2 4 6 8 10

W o

(S

—
T

normalized splitting function amplitudes

C-’O

[
»
(7]
o
=
o
3
o
>
\

)
\

P
prd ’—-_‘_ -
————T - [ g

2 4 6 8 10 12 4 6 _ 8 10 1
harmonic degree

i)
N
(o]
@
|
O
—
[

- Figure 15. RMS amplitude of the observed structure
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are normalized by the degenerate frequencies of the mul-
tiplets. Amplitudes predicted by models SH.10c.17 and
S12_-WM13 are also shown.
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Examples for s > 4 are presented by Ritzwoller and
Resovsky [1995]. Second, we observe that specification
of s > 4 and cross-coupling coefficients usually improves
not only average misfit but aiso HSNR misfit, amplitude
misfit, and phase misfit. Table 8 gives examples of im-
provements achieved by extending our analyses to the
highest specified degree (spax, column 4 of Table 6) and

t+ all of
the specification of structural coupling. Almost all of

the HSNR misfits listed are reduced by more than 20%
when more detailed structures are specified.

5. Assigning Uncertainty

Standard error analyses underestimate uncertainties
in structure coefficients obtained from GSF. This fail-
ure is attributable to theoretical errors (section 3.1) and
to covariances among the structure coeflicients (section
3.2), which are not usually incorporated in normal mode
error analyses. The error analysis technique we employ
uses regressions performed on synthetic data with sim-
ulated theoretical errors to assess the combined effects
of these errors and covariances.

5.1. Simulating Error

Rather than identifying and synthesizing each com-
ponent of the theoretical error, we have found it more
efficient to assess the net cumulative impact of these

Table 8a. Improving HSNR Misfits by Specifying
Higher Degrees
Degrees Degrees
0-4 Specified 0-smax Specified
Multiplets ~MR* AMP? PM° MR AM, PM,
% deg % deg
0S8 .20 5.0 4.1 .13 4.5 3.5
15s .19 1.5 5.1 .06 0.7 2.8
256 .18 11.8 3.7 12 7.9 2.0
0520-0T%1- 37 15.5 8.8 31 13.7 6.6
-2513

aHSNR misfit ratio.
PHSNR amplitude misfit.
°HSNR phase misfit.

Table 8b. Improving HSNR Misfits by Specifying
Coupling

Structural Structural
Coupling Unspecified = Coupling Specified
multiplets MR AM, PM, MR AM, PM,
% deg ratio % deg
255-156 29 150 7.6 .10 2.5 2.5
554-2T}4 .32 8.8 8.8 13 4.7 3.1
0T20-0519 .39  15.8 9.5 31 13.8 79
358-6S3 .26 10.1 9.9 .10 6.1 5.6
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errors by simulating observed characteristics of misfits
to HSNR data obtained with the estimated coefficients.
For each seismogram j and each multiplet group k the
simulated data may be represented by

kS50 (W) R k5 (W) = 1y (W) + 1Ty Wk s (W) (14)

ksj’-ymh(w) is a complex synthetic spectrum produced

using the estimated structure coefficients, n;(w) is ad-
ditive noise, and ;7;(w) is a complex transfer function
with which we model theoretical errors.

Synthetic additive noise at each discrete frequency of
each spectrum is created using a random deviate which
imitates the statistical properties of observed seismic
noise and has the average amplitude measured for the
corresponding data spectrum, described in section 4.2.
This form of additive noise was used to produce Figure
13.

We approximate ; T'j(w) using two important assump-
tions. The first is that for each seismogram the trans-
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Figure 16. Sample transfer functions in amplitude
and phase and linear fits to these functions. (left) Am-
plitude and phase spectra of ¢T18-9S17-2511. The solid
lines are data spectra, the thin dashed lines are noise-
free synthetic spectra constructed using GSF structure
coeflicient estimates, and the thick dashed lines are the
product of the synthetic spectra and the best fit linear
approximation to the transfer functions. (right) The
linear transfer functions, together with the actual trans-
fer functions between data and synthetics.
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fer function for each multiplet group analyzed is a low-
order polynomial function of frequency. The amplitude
transfer function is the ratio of data amplitude to syn-
thetic amplitude. The phase transfer function is the
difference between the (unwrapped) phases of data and
synthetic spectra. As Figure 16 demonstrates, most of
the misfit in the data can be accounted for by linear
transfer functions in amplitude and phase. We have
found it adequate to use linear functions in simulating
the data.

The second assumption is that the means and slopes
of the linear transfer functions that best fit the data
have simple Gaussian distributions in the set of records
used, independent of source-receiver geometries. This
assumption allows us to use distributions observed for
high SNR data to simulate theoretical errors in the
whole data set, so that we need not attempt to measure
theoretical error transfer functions which are obscured
by noise. The thick solid histograms in Figure 17 show
the distributions of the means and slopes of the lin-
ear fits to amplitude ratio and phase difference transfer
functions for recordings of ¢T18-0S17-2.511 with SNR >
50. Gaussians which fit these histograms are shown as
thin solid lines. Synthetic distributions of means and
slopes are produced using random distributions which
reproduce the observed Gaussians. The resulting trans-
fer functions are combined with synthetic additive noise
to yield our simulated data. Distributions of measured
means and slopes from one such simulation of ¢T1g-9.517-
2511 data are shown as dashed line histograms in Figure
17.

The assumption that the means and slopes of trans-
fer functions are governed by Gaussian distributions is
more questionable than the assumption that theoretical
errors are manifest as linear transfer functions. How-
ever, comparisons of observed and simulated data in-
dicate that it is not obviously flawed. Figure 18 uses
comparisons of synthetic spectra with and without sim-
ulated noise and theoretical errors to demonstrate the
success of the method in duplicating the gross charac-
teristics of observed misfit. The effects of noise and
theoretical errors in Figure 18 each resemble those dis-
played by the observed misfits of Figure 12.

5.2. Monte Carlo Approximation of
Uncertainty

After a set of structure coefficients have been esti-
mated with GSF for a given multiplet group, these co--
efficients are used to construct synthetic spectra for each
seismogram in the data. Following equation (14), these
spectra are modified with synthetic additive noise and
the transfer functions which simulate theoretical error.
GSF is then applied to these noisy synthetics, and the
resulting coefficient estimates are compared with the
original estimates. Because these regressions imitate
the original GSF analyses, the effect of covariances is
incorporated in simulating the effect of error on struc-
ture coefficient estimates.
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distribution of transfer function means
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Sample distributions of (left) means and (right) slopes for best fit linear transfer

functions in (top) phase difference and (bottom) amplitude ratio, for recordings of ¢T18-0517-2.511
with SNR > 50. Thick solid histograms are distributions for transfer functions between data and
noise-free synthetics made using structure coefficient estimates, as in Figure 16. Gaussians fit
to these distributions are shown as thin solid lines. Dashed histograms are distributions for
transfer functions between noise-free synthetics and synthetics which incorporate additive noise

and simulated transfer functions.

This procedure is repeated for several realizations of
simulated noise and theoretical error, and the suites of
coefficient reestimates are interpreted as if they resulted
from “Monte Carlo” sampling of real data. That is, the
standard deviation of the suite of re-estimates for each
coefficient, 0%, is used to assign an uncertainty, usually
of magnitude 20%, to the original estimates. Figure 19
demonstrates the result of this procedure for some of the
coefficients of the ¢7T15-0517-2511 group. For each coef-
ficient, 20 error bars centered on the original GSF esti-
mates are superimposed on thin horizontal lines which
mark the estimates resulting from each realization of
the synthetic data. The assigned error bars are gen-
erally consistent with the size and distribution of dif-
ferences between estimates and model predictions and
with those between estimates for multiplets which sam-
ple the Earth similarly (i.e., o715 and 2S511).

5.3. Identifying Outliers

The uncertainty estimation described above uses a
statistical approach to model theoretical errors using
the characteristics of HSNR transfer functions. This
approach assumes that the distribution of errors is iden-
tical for all sources and receivers at all times. Uncer-
tainties estimated with this assumption can be too small
when there are strong systematic errors affecting only

subsets of the data. At present, we account for such
cases only when they result in obvious “outliers” in our
catalogue of measurements.

We use the assumption of along-branch smoothness
to identify outliers. Outliers are defined as structure co-
efficients which are far, relative to their uncertainties,
from the trend established by estimates of correspond-
ing coeflicients of similar multiplets. With “far” defined
as 40! from a smooth trend, fewer than 5% of our ini-
tial estimates are identifiable as outliers. Most of these
cases appear to be attributable to unspecified struc-
ture in analyses of strongly coupling multiplet groups.
The coeflicients in question are “corrected” to achieve
reasonable internal consistency by increasing the asso-
ciated uncertainties and, where appropriate, by shifting
the estimates into better alignment with along-branch
trends.

Simulated bias, which is the difference between orig-
inal GSF estimates and the average of the Monte Carlo
reestimates, is generally smaller than the estimated un-
certainty for each coefficient. Because simulated bias is
expected to approximate the bias in our original esti-
mates caused by noise and error, when significant simu-
lated bias is observed we shift our estimates accordingly
and increase coefficient uncertainties by 25% of the sim-
ulated bias. It should be noted that we do not observe
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1140 synthetic records
with theoretical error and additive noise
I S — . . . .

08¢

misfit ratio

W
=
[
N

-
=
T

absolute phase misfit (degrees)

o

d
@

o
o

°
N
T

absolute amplitude misfit

2 5 10 20 50
signal-to-noise ratio

Figure 18. Simulated variation of misfit with SNR,
constructed similarly to Figure 13, except that the
“noisy” data include simulated theoretical error transfer
functions as well as additive noise. These synthesized
misfit trends compare favorably with those observed for
real data, as in Figure 12.

strong bias in GSF estimates of multiplet @, which has
been reported in some other normal mode studies (J.
Durek and G. Ekstrém, unpublished data, 1997).

6. Conclusions

To provide improved normal mode constraints on 3-D
Earth structure, we have developed generalized spectral
fitting and a method of performing Monte Carlo sim-
ulations to obtain reasonable estimates of uncertainty.
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GSF and the Monte Carlo simulations have been used
to estimate more than 3100 structure coefficients and
the associated uncertainties for the seismic spectrum
below 3 mHz. These coefficients may be retrieved from
the electronic supplement to this paper. Previously,
fewer than a thousand such coefficients had been esti-
mated for this portion of the spectrum [Ritzwoller et al.,
1988; Smith and Masters, 1989a,b; Tromp and Zanz-
erkia, 1995; He and Tromp, 1996].

Because these GSF regressions have reduced theoret-
ical errors and covariances and because our error analy-
ses account for the effects of the errors and covariances
that remain, the new coefficients are generally more ac-
curate and more precise than those of previous cata-
logues. The improved size, accuracy, and precision of
the new catalogue imply (1) improved resolution of 3-D
Earth structures, particularly in the transition zone and
lower mantle, and (2) enhanced capability for assessing
and comparing 3-D Earth models.

Resolution of structures in the transition zone and
outermost lower mantle should be significantly improved
by almost 2000 new structure coefficient estimates for
the ¢S, oT', and 2S branches. GSF has proved essen-
tial to obtaining constraints from these modes, because
most are subject to strong cross-coupling through the
Coriolis force and aspherical structures. Likewise, res-
olution of lower mantle structures has been enhanced
with more than 1000 coefficient estimates from various
overtone multiplets, including lower mantle shear modes
of the 1.5, 1T, and 35 branches and lower mantle com-
pressional modes of the 45 and 55 branches. Almost
half of these multiplets either cross-couple strongly or
underlie strongly cross-coupled fundamentals. GSF and
the expanded long-period data set allow us to obtain
constraints through degrees 6 and 8 for many of these
overtones. The estimated coeflicients of cross-coupling
include 127 odd-degree coefficients, the first normal
mode constraints on odd-degree structures, most of
which are sensitive to the transition zone and lower

mantle.
The improved capability for the assessment of 3-D

models is illustrated by Figure 20, which displays sev-
eral along-branch sets of structure coefficient estimates
and predictions. The estimates from this study are plot-
ted as thick error bars and those of earlier studies are
plotted as thin error bars. Solid lines show the predic-
tions of model SH.10c¢.17 and dashed lines show those
of model S12.WM13. It is clear that the new suites
of degrees 2 and 4 structure coefficient estimates are
less uncertain and more complete and show smoother
trends than those of previous studies. These coeffi-
cients are better able to discriminate between disparate
model predictions. For example, it is apparent that
model SH.10c.17 is favored by GSF estimates of ¢ and
Im(c3) for oS modes which are dominantly sensitive to
the transition zone and upper mantle (! > 10). The
new estimates often agree with SH.10c.17 predictions
better than do the earlier estimates [Ritzwoller et al.,
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Figure 19. Results from Monte Carlo error analysis. Structure coefficient estimates as plotted
as vertical error bars. The plotted coefficients are ordered as in Figure 6. Horizontal lines mark
the estimates from 20 realizations of the Monte Carlo error analysis. The thick vertical error
bars are centered on the averages of these distributions and have half lengths equal to 2¢ for each
distribution. The predictions of models S12.-WM13 (dashed lines) and SH.10c.17 (solid lines) are
shown for comparison. Before such estimates are catalogued, they are revised using observations

of biasing and along-branch consistency.

1988; Smith and Masters, 1989a,b] included in the con-
struction of that model. Conversely, ¢) estimates for
the lower mantle (I < 10) oS modes, Re(c2) estimates
for toroidal ¢T" modes and ¢ estimates for 5.5 modes
favor model S12_-WM13.

GSF structure coefficient estimates at higher degrees,
such as those for degrees 6 and 8 in Figure 20, also
appear to be precise enough for useful model assess-
ment. Of particular note is the difference between the
amplitude of estimated splitting functions for (S, T,
2S5 modes and model predictions. Such modes are pri-

marily sensitive to shear velocity in the transition zone
and, as noted in section 4.3.2 and apparent in Plate 1,
estimated coefficient amplitudes at degrees 6 and 8 are
elevated relative the predictions of models SH.10c.17
and S12.WM13. Because of the attention given to re-
ducing and simulating the effects of theoretical error
and covariance, it is likely that this phenomenon is not
an artifact of the regression technique. The spectrum
of transition zone heterogeneity may well be “whiter”
than that predicted by SH.10c.17, S12_.WM13, and sev-
eral similar models.
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Figure 20. Sample comparisons of GSF structure
coefficient estimates (thick bars), earlier structure co-
efficient estimates (thin bars), and the predictions of
models S12.WM13 (dashed lines) and SH.10c.17 (solid
lines). Earlier estimates are from the studies by Ritz-

woller et al. [1988], Smith and Masters [1989a,b], and
Tromp and Zanzerkia [1995].

We have begun to apply this and other information
in the new normal mode catalogue to the refinement of
3-D Earth models [e.g., Resovsky and Ritzwoller, 1997].
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However, it is important that the resolution of the cata-
logue be improved by performing normal mode analyses
of similar detail to frequencies beyond 3 mHz. Given ex-
isting data and computational resources, GSF is readily
adapted to the analysis of the spectrum between 3 and
5 mHz, where coupling between adjacent fundamental
mode multiplets is important. Strong constraints on
odd degree structure in the upper mantle should result
from such analyses.
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