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Feasibility of Truncated Perturbation Expansions to Approximate Rayleigh- 

Wave Eigenfrequencies and Eigenfunctions in Heterogeneous Media 

by Mark B. James and Michael H. Ritzwoller 

Abstract We investigate the feasibility of using truncated perturbation expansions 
higher than first order to compute the effect of structural variations relative to a 
laterally homogeneous reference on broadband (e.g., 20 to 250 sec period) Rayleigh- 
wave velocities and eigenfuncfions. Feasibility is a function of speed, accuracy, and 
ease-of-use. We discuss the physical meaning of relevant terms in the expansion and 
posit and test an expansion, referred to as quasi-third-order theory, that consists of 
all boundary and volume self-terms through third-order and at second-order bound- 
ary-volume cross-terms between all boundaries and adjoining volumes that the 
boundary intersects. We set accuracy criteria at 0.5% for group and phase velocities 
and several percent for vertical eigenfuncfions. For the magnitude of crustal and 
upper mantle heterogeneifies found across Eurasia, first-order perturbation theory 
meets these criteria for group and phase velocities only above about 80 sec period 
but meets the eigenfunction criterion down to about 30 sec period. The use of quasi- 
third-order theory for phase and group velocities and the first-order theory for ei- 
genfunctions is fast (about two orders of magnitude faster than the flat-earth and 
spherical-earth eigenfunctions codes used for comparison), relatively easy to use, and 
should meet the accuracy criteria required in most inversions down to about 30 sec 
period. If accuracy standards are more stringent than those set here, if there are 
structural variations larger than those considered here, or if the application requires 
inversion below about 30 sec period, then it would be advisable to regionalize the 
area of study and to introduce more than one reference model. 

Introduction 

It is common in large-scale seismology to treat lateral 
variations in the structure of the Earth as perturbations to a 
global or large-scale reference. Because of its computational 
efficiency, a Taylor series expansion truncated at first order 
(we refer to this as first-order perturbation theory) is fre- 
quently used to compute the effect of these structural vari- 
ations on seismic observables such as surface-wave group 
and phase velocities and normal-mode frequencies. The ef- 
ficiency of this theory results from the fact that it only re- 
quires a single computation of the partial derivative of each 
observable with respect to each of the structural variables, 
and these derivatives can be computed a priori  and tabu- 
lated. Perturbation expansions are much faster, therefore, 
than solving for eigenfrequencies and eigenfunctions di- 
rectly. It is, however, generally recognized that the use of 
first-order perturbation theory below about 100 sec period 
incurs significant errors if the deviations from the reference 
state are large. In particular, it is well known (but not con- 
spicuously documented) that topography on the Moho dis- 
continuity notoriously causes the first-order theory to break 
down. 

The breakdown of the first-order theory below 100 sec 
period is a serious problem for broadband surface-wave in- 
versions across large and diverse geographical areas. A con- 
siderable computational price must be paid to compute dis- 
persion curves and eigenfunctions on a grid across the entire 
region of study. The magnitude of this problem scales with 
the size of the studied region and inversely with the grid 
spacing. The goal of this article is to consider higher-order 
perturbation theories and to investigate the feasibility of their 
use in broadband surface-wave inversions, where feasibility 
is a function of speed, accuracy, and ease-of-use. 

There are several caveats concerning the generality of 
the results presented here. First, the results depend in detail 
on model parameterization. For simplicity of use and inter- 
pretation, we consider structural perturbations to be constant 
in layers. Second, the results also depend in detail on the 
nature of the reference model, not just on the type of the 
basis functions. In particular, for a layered model, there is a 
trade-off between accuracy and ease-of-use with respect to 
layer thicknesses. Finally, the conclusions reached about the 
feasibility of the use of higher order perturbation theories 
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are dependent on the desired accuracy and the size of the 
heterogeneities relative to the reference. 

The accuracy standards that we set are the following: 
0.5% in phase and group velocities below 100 sec period, 
somewhat better at longer periods, and several percent (i.e., 
- 5 % )  for eigenfunctions. We take Earth structures in the 
crust and mantle from the models CRUST-5.1 of Mooney 
et al. (1998) and S16B30 of Masters et al. (1996). These 
structures are then represented as perturbations relative to a 
reference model that approximates the average velocity 
structure under stable platform regions in Asia. This conti- 
nent-wide reference, which we call ESC (Eurasian Stable 
Continent), is based on the stable Eurasian model of Lerner- 
Lain and Jordan (1983). ESC is composed of 10 homoge- 
neous spherical shells and 4 first-order discontinuities from 
the solid surface to 400 kin depth and is underlain by PREM 
(Dziewonski and Anderson, 1981). It, thus, comprises 14 
model parameters on 51 radial knots. We present accuracy 
results at four structurally diverse geographical locations: the 
Northern Caspian depression (thick sediments), the Siberian 
shield (very similar to ESC), Northern Japan (thin crust), and 
Southern Tibet (thick crust). The accuracy of the perturba- 
tion theories relative to a global average, such as PREM, 
would naturally be much worse. 

The next section presents a discussion of the perturba- 
tion expansion, including definitions and discussion of the 
physical meaning of the higher order terms. Based on the 
physical insight gained from these cases, we adopt, for fur- 
ther test, an approximation to higher order perturbation the- 
ory that is considerably more accurate than first-order theory 
but remains relatively easy to use. We refer to this approx- 
imation as a "quasi-third-order perturbation theory." Then 
we present tests of this expansion by investigating the ac- 
curacy of this theory applied at the four chosen points around 
Eurasia. 

Perturbation Expansions 

Consider a spherically symmetric, isotropic, anelastic 
reference model defined by the vector mo(r) = It(r), ~(r), 
p(r), Q(r)] ~, where r is radius, fl is shear velocity, o~ is com- 
pressional velocity, p is density, and Q is the quality factor. 
Isotropic, location-dependent perturbations to the reference 
are given by c~m(r) = [tfl(r), c~(r), 6p(r), 6Q(r)] ~. Let m(r) 
denote the sum of the reference and the perturbation. For 
simplicity, assume that &n(r) is constant radially in a set of 
N spherical shells and that there are also perturbations, hi, 
h 2 . . . . .  hm, to the radii of a set of M discontinuities that 
exist in the reference model too. With these definitions, first- 
order perturbation theory for group (U) and phase (c) veloc- 
ities and the vertical or horizontal radial eigenfunctions (~) 
is simply a truncated Taylor Series expansion defined as fol- 
lows: 

U(o) ~ Uo(co) 
+ ~ (0U(co)]. gm, 

n= 1 \ 3m~ / 

(1) 

c(@ ~- Co(CO) 
N (0¢(co)/ 

+ ~ (oc(co)] 
m = 1 \ (~hm ] hm' 

(2) 

~(r, co) ~- ~o (r, co) + ~ (O~(r'co)].tm, 
= 1 \ Omn / 

+ I 
m= l \ - G - - ~  / hm, 

(3) 

where Uo(co) is the group velocity curve, co(co) is the phase 
velocity curve, and ~(r) is the frequency-dependent radial 
eigenfunction (either horizontal or vertical) for m o, 6m n is 
the volumetric perturbation in layer n, and hm is topography 
on discontinuity m. Hereafter, equations will be presented 
only for phase velocity because the group velocity and radial 
eigenfunction expressions are identical in mathematical 
form. We compute partial derivatives using finite differences 
and the spherical Earth eigenfunction code of Woodhouse 
(1988). 

Because Rayleigh-wave velocities are dominantly con- 
trolled by shear velocities, we will consider volumetric per- 
turbations only to shear velocity and assume that a, p, and 
Q are position independent. The results of the tests we report 
here are not affected appreciably by this assumption. Thus, 
the vector ~m hereafter will be considered to be a scalar, c~rn, 
to be thought of as a shear velocity perturbation. 

The accuracy of the first-order theory to predict group 
and phase velocities at the four geographical locations is 
presented in Figure 1. Phase velocities are generally more 
accurately predicted than group velocities. Because the local 
models differ most appreciably from the reference model 
ESC under Japan and Tibet, the first-order theory is least 
accurate in these locations. With a group velocity accuracy 
standard of about 0.5%, first-order perturbation theory 
breaks down at these locations relative to ESC at periods 
below about 80 to 100 sec, consistent with the commonly 
held beliefs about the theory. 

A general perturbation theoretic expansion to order P is 
defined exactly as a higher-order Taylor Series expansion 
(e.g., Affken, 1985; sec. 5.6): 

c(~) ~ Co(CO) + &nn 
p = l P .  1 

+ ~] h,. o(co). 
m=l  

(4) 

This expression has been written in operator notation where, 
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Figure 1. Accuracy of the group (solid line) and phase (dashed line) velocity curves 
for four diverse geographical locations computed with first-order perturbation theory. 
Accuracy is defined as the percentage difference between the perturbation-theoretic 
curve and the spherical-earth eigenfunction curve (Woodhouse, 1988) at each period. 

for example, the t e r m  (O[Ohm) P should be understood as 
0P/0~c We aim to identify the most significant terms in the 

expansion in order to define a simplified expansion that ap- 
proximates the full expansion well. Discussion is aided by 
the introduction of some terminology. 

There are five types of terms in equation (4) in two 
general categories that we refer to as "self" and "cross" 
terms. "Self-terms" involve derivatives of only a single 
model parameter. Thus, 2 2 0 c/Ore, is a second-order self-term 

with respect to volumetric structure in the nth layer. "Cross- 
terms" involve derivatives with respect to more than one 
model parameter. For example, 02c]OmnOhm is a second-order 
boundary-volume cross-term with respect to volumetric 
structure in the nth layer and topography on the ruth discon- 
tinuity. There are also cross-terms between volumes (e.g., 
OZc/OmnOmk) and between boundaries (e.g., 02c/Oh,,Ohk). 
Thus, the five types of terms at order p are volumetric-self 
[VcP)], boundary-self [B(P)], boundary-volume-cross [BV(P)], 
volume-volume-cross [VV(P)], and boundary-boundary- 
cross [BBCP)]. With this definition of these operators, equa- 
tion (4) can be rewritten as follows: 

1 
c (~ )  ~ Co(~O) + + 

p = l  Y 

+ BV (p) + VV ~) + BB ~)} c(~o). (5)  

All cross-terms are zero at first-order: B V  (1) = V V  O) = 

BB (1) = 0. Note that if perturbations 6a, 5p, and ~Q were 
also included, equation (5) would be complicated further by 
the existence of volume-volume cross-terms between struc- 
tures of different types, for example, shear velocity-com- 
pressional velocity cross-terms. These terms are generally 
too small to consider further. The methods used to compute 
the partial derivatives numerically and a discussion of nu- 
merical stability are presented in James (1998). 

The only significant boundary-volume cross-terms are 
those between each boundary and the volumetric layers that 
topography on that boundary intersects. Thus, only a small 
subset of the terms that define BV (p) are significant. The 
physical significance of an expansion that retains only vol- 
ume and boundary self-terms and volume-boundary cross- 
terms between boundaries and adjoining volumes can be 
understood by inspecting Figure 2. Consider a model com- 
posed of two layers: an upper layer (layer 1) with unper- 
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Figure 2. Illustration of the effect of retaining dif- 
ferent terms in the perturbation expansion for a simple 
two-layer model. (a) The unperturbed and (b) the per- 
turbed models. (c) Boundary self-terms represent 
moving the boundary without modifying volumetric 
structure. (d) The addition of volume self-terms 
changes the velocity in each layer, but errors in the 
hills and valleys remain. (e) Inclusion of boundary- 
volume cross-terms corrects the velocities in the hills 
and valleys. 

~v, m v2 

turbed velocity vl and a lower layer (layer 2) with unper- 
turbed velocity v2 (Fig. 2a) separated by a boundary at radius 
r. Introduce topography on the boundary between the layers 
and a perturbation in velocity in both layers such that r --+ 
r + h, vl ~ vl + ~Vl, and va ~ v2 + 6v2 (Fig. 2b). The 
variables h, v~, and v2 may vary horizontally. The boundary 
self-terms represent the effect of perturbing the boundary 
with no perturbation in the velocities (Fig. 2c). The volume 
self-terms include the effect of perturbing the velocities in 
both volumes, but the velocities in the hills and valleys re- 
main incorrect (Fig. 2d). The hills should have velocity v2 
+ 6v2, but are approximately v2 + CYVl because they fall in 
the radial layer that originally was part of layer 1, and, there- 
fore, the layer 1 velocity perturbation has been applied to 
them by the volume self-terms that are not cognizant of to- 
pography. Similarly, the valleys should be v 1 + 6Vl but are 
approximately Vl + cYv2. The cross-terms between the 
boundary and layers 1 and 2 act to correct this error by 
approximately replacing the erroneous velocities in the hills 

and valleys with the correct perturbed velocities: 1; 1 -I- 1~1~ 2 

--->-- (Vl + 6vl) and v 2 + 6v1 -->-- (v2 + 6v2). 
For a heuristic understanding of how the boundary-vol- 

ume cross-terms replace the erroneous velocities in the hills 
and valleys with more accurate velocities, consider the 
second-order boundary-volume cross-terms in this simple 
model: 

2c 02c h~v2) (6) 
BV (2) = 2 \0v--~ h~V1 -}- OV20-'-h 

02C 02C 
- -  h(Ovl - (~lY2) '~  - -  h((~v 2 - 6!yl) ,  (7) 
OvlOh Ov20h 

where the latter approximate equality follows because 
02c/Ov20h ~ -02clOvlOh. The second-order boundary-vol- 
ume cross-terms add to the expansion a term proportional to 
6v2 - Or1, which is precisely what is needed to convert v2 
+ 6Vl to v z + ~v2, and a term proportional to 6Va - c~vz, 
which is needed to convert Va + 6v2 to vl + 6vl. The near 
antisymmetry between the second-order boundary-volume 
cross-terms for the layers straddling the Moho in ESC (i.e., 
layers 4 and 5) results from the fact that a positive velocity 
perturbation in layer 5 increases the velocity jump on the 
Moho relative to ESC, whereas a positive perturbation in 
layer 4 decreases the jump. James (1998) provides further 
documentation of this antisymmetry. 

Figure 3 presents accuracy estimates for the 50 sec Ray- 
leigh wave for six different simple models. All models are 
taken relative to ESC. The first model (Fig. 3a) contains only 
a + 10-kin perturbation on the Moho. Boundary self-terms 
are the only nonzero terms in the expansion for this model, 
and the series converges to better than 0.5% accuracy by 
third order. The second model (Fig. 3b) contains only a 10% 
shear velocity perturbation to layer 5 in ESC, which is the 
layer directly underlying the Moho. Convergence occurs by 
second order. In general, convergence occurs at lower order 
for realistically large perturbations in volumetric structure 
than for large topographic perturbations. Cross-terms come 
into play when more than one model parameter perturbation 
is included. Volumetric perturbations to layers 4 and 5, 
straddling the Moho, are included in the third model (Fig. 
3c), but there is no topography on the Moho. Volume-vol- 
ume terms are the only nonzero cross-terms for this model. 
These terms, like boundary-boundary cross-terms, are 
smaller than the self-terms and the largest boundary-volume 
cross-terms at every order. Hence, we drop V V  (p) and BB (p) 
from further consideration. The fourth model (Fig. 3d) has 
+ 10 km of topography on the Moho and a + 10% shear 
velocity perturbation in layer 5 directly underlying the 
Moho. Boundary and volume self-terms alone yield about a 
1% error in group velocity, which is corrected with the ad- 
dition of the boundary-volume cross-term. Convergence to 
about 0.5% error occurs by second order, but an appreciable 
correction is applied by the third-order boundary-volume 
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term. Models five and six have - 10% and + 10% pertur- 
bations in shear velocity in layers 4 and 5, respectively, and 
+ 10 km (Fig. 3e) or + 20 km (Fig. 3f) of topography on 
the Moho. These figures clearly indicate the importance of 
the cross-terms between topography on the Moho and its 
adjoining volumetric layers. Errors in excess of 3% can oc- 
cur when these terms are neglected. With + 10 km on the 
Moho, convergence occurs by third order, but fourth-order 
terms are required to achieve 0.5% errors with + 20 km on 
the Moho for the 50 sec Rayleigh wave. 

Based on the results presented in Figure 3, we posit the 
following simplification as a computationally feasible ap- 
proximation to the full perturbation expansion. This approx- 
imation retains all self-terms through third-order and second- 
order boundary-volume cross-terms between all boundaries 
and adjoining volumetric layers that the topography inter- 
sects. Mathematically, this simplification to equation (5) can 
be written as follows: 

C((D) ~-" C0@O ) -~- {cBc~;t'2) 1 (Ve) + 
p=lP,  I 

+ B~))} c(co), (8) 

where Bq~ 2) denotes only those cross-terms in BV (2) between 
topography on each boundary and the volumetric layers that 
the topography intersects. We call the expansion in equation 
(8) a "quasi-third-order" theory because some of the largest 
third-order terms are retained. Of course, because volume- 
volume cross-terms, boundary-boundary cross-terms, and 
even some boundary-volume cross-terms are also not in- 
cluded, it is not even a full second-order theory. The number 
of terms in this expansion is 55 compared with 671 in the 
full third-order theory. If topography causes boundaries to 
narrowly approach one another as layers pinch off, then 
other terms should be retained, in particular, boundary- 
boundary cross-terms. 

Test of  the Quasi-Third-Order Theory  

Figure 4 presents the results of a test of the accuracy of 
the quasi-third-order theory represented by equation (8), 
evaluated at four geographical locations. Comparison with 
Figure 1 shows that, like the first-order theory, quasi-third- 
order theory is most accurate at long periods and at locations 
that are structurally similar to ESC (that is, Caspian Depres- 
sion, Siberian Shield), and phase velocities are predicted 
slightly better than group velocities on average. However, 
the quasi-third-order theory provides a significant improve- 
ment over the first-order theory. The quasi-third-order theory 
meets the accuracy standard of approximately 0.5% down 
to about 30 sec period at all four sites. The biggest problems 
for the theory are at and below 20 sec period at all sites and 
at Tibet and Japan because these regions are most unlike 
ESC. 

The problems for the quasi-third-order theory are 
largely attributable to perturbations to crustal thickness 
(Moho topography plus free-surface topography). For ex- 
ample, the model crust under Japan is about 27 km thick 
compared to 43 km for ESC, and the model crust under Tibet 
is about 57.5 km thick. This is documented further in James 
(1998). 

I n  summary, quasi-third-order perturbation theory can 
be used to compute group and phase velocities down to 
about 30 sec period with an accuracy of better than about 
0.5% and with up to about _+ 15 km perturbation in crustal 
thickness relative to the reference model. If this accuracy is 
sufficient, the theory should be able to be applied across 
most continents with a single reference model Across 
regions with larger structural perturbations to the crust (e.g., 
continent-ocean variations), more than one reference model 
would have to be used to retain this level of accuracy or the 
theory would have to be applied only at somewhat longer 
periods, say at periods above 40 to 50 sec. 

To this point, we have not yet discussed the accuracy 
of eigenfunctions. An accuracy of ~5% for the eigenfunc- 
tions is sufficient for most purposes because errors involved 
in using eigenfunctions are usually somewhat larger than this 
(e.g., instrument responses, source depth, theoretical errors 
in synthetic formalisms, etc.). We concluded above that 
phase and group velocities predicted by the first-order per- 
turbation theory meet the accuracy criterion of 0.5% in gen- 
eral only above about 80 to 100 sec period. Figure 5 com- 
pares first-order perturbation-theoretic eigenfunctions with 
those from ESC and those from the local models for Tibet 
and Japan. Because the perturbation-theoretic eigenfunc- 
tions are evaluated on the radial knots of the model ESC, 
some details of the local eigenfunctions are difficult to re- 
produce. However, the first-order perturbation-theoretic ver- 
tical eigenfunctions are generally accurate at the +_ 3% level 
down to about 30 sec period, the short-period boundary 
above which quasi-third-order perturbation theory met the 
accuracy criterion for group and phase velocities. Thus, first- 
order eigenfunctions are sufficiently accurate to be used with 
the quasi-third-order group and phase velocities. If more ac- 
curate eigenfunctions are desired, particularly at periods be- 
low 30 see, then the second-order terms of the quasi-third- 
order expansion should be retained for the eigenfunctions as 
well. 

Conclusions 

This study has been motivated by the desire to improve 
the speed of inversions of broadband surface-wave disper- 
sion curves across continents. Because structural partial de- 
rivatives in inversion codes are usually computed numeri- 
cally, this speed up depends largely on the ability to 
accelerate the solution of the forward problem. In addition, 
model space sampling methods such as Monte Carlo meth- 
ods, genetic and evolutionary algorithms, etc., depend on 
solving the forward problem efficiently and often. Thus, a 
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Figure 4. Accuracy of quasi-third-order perturbation theory for group velocity (bold 
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Accuracy is defined as in Figure 1. 

large reduction in the time needed to solve the surface-wave 
forward problem may not only result in models being con- 
structed faster but also, perhaps, in better characterized and 
understood models. 

We estimate that the accuracy needed in most surface- 
wave inversions is no more than about 0.5% for group and 
phase velocities at periods below 100 sec but is somewhat 
smaller than this at longer periods. Eigenfunctions can dis- 
play significantly degraded accuracy, with accuracies of sev- 
eral percent (i.e., --5%) sufficient for most applications. 

We have shown that for structural perturbations across 
continents, first-order perturbation theory meets the accuracy 
criterion for group and phase velocities above about 80 to 
100 sec period. However, below about 80 sec period, the 
first-order theory breaks down in regions, such as Japan and 
Tibet, that differ appreciably from the reference model ESC. 
Because the accuracy criterion for eigenfunctions is more 
liberal, first-order perturbation-theoretic eigenfunctions 
meet the accuracy criterion down to a period of about 30 
sec, even for Japan and Tibet. 

To apply perturbation theories with confidence below 
about 80 sec period across continents, higher order terms in 
the perturbation expansion must be retained. Because the 
number of terms proliferates rapidly with the order of the 
expansion and the computation of the partial derivatives is 
relatively unstable, it is necessary to choose the terms in- 
cluded in the expansion at orders beyond the first with care. 
Fortunately, the vast majority of terms in the expansion are 
insignificant. The most significant terms in the expansion are 
volmne and boundary self-terms and cross-terms between 
boundary topography and volumetric structures adjacent to 
the boundary. By retaining self-terms through third-order 
and second-order boundary-volume cross-terms between all 
boundaries and adjoining volumes that the topography in- 
tersects, the number of terms in the expansion is decreased 
by more than an order-of-magnitude relative to the full third- 
order theory (671 ~ 55), but the reduced expansion is nearly 
as accurate as the full third-order theory. We call this re- 
duced expansion "quasi-third-order perturbation theory," 
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Figure 5. Comparison of three sets of eigenfunctions at three periods (30, 50, and 
100 see) for the models of Tibet and Japan. The solid line with diamonds is for ESC, 
the dashed line with pluses is for first-order perturbation theory, and the dotted line 
with squares is the correct eigenfunction. The vertical lines represent crustal thickness 
in ESC (42.9 km) and in the local model. Eigenfunctions have been normalized on each 
plot but have been normalized identically in each plot so that comparison can be made 
meaningfully. 
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which we find meets the group and phase velocity criteria 
across Eurasia down to about 30 sec period. 

Quasi-third-order perturbation theory is not as accurate 
as spherical-earth eigenfunction codes or flat-earth codes 
with appropriate earth-flattening transformations, but it is 
much faster. Our quasi-third-order code is more than 100 
times faster than the flat-earth code we use for comparison 
(Herrmann, 1978), which is itself somewhat faster than the 
spherical-earth code (Woodhouse, 1988). This speed in- 
crease of two orders of magnitude over the full solutions in 
flat or spherical geometries translates into a similar improve- 
ment in the speed of the inversion. 

In conclusion, because of the number of terms, the use 
of perturbation theories beyond first order is tedious, and the 
computation of accurate partial derivatives can be compli- 
cated. It is possible, however, to strike a balance between 
speed and accuracy and, by retaining only selected terms in 
the expansion, to produce an expansion that is fast, relatively 
easy to use, and meets the accuracy criteria needed in in- 
versions. If  accuracy standards more stringent than those set 
here are required, if there are structural variations larger than 
those considered here, or if periods below about 30 sec are 
required in the inversion, then it would be advisable to re- 
gionalize the area of study and introduce more than one ref- 
erence model. 
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