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A Fast and Reliable Method for Surface Wave Tomography

M. P. BARMIN,! M. H. RITZwOLLER,! and A. L. LEVSHIN!

Abstract— We describe a method to invert regional or global scale surface-wave group or phase-
velocity measurements to estimate 2-D models of the distribution and strength of isotropic and azimuthally
anisotropic velocity variations. Such maps have at least two purposes in monitoring the nuclear
Comprehensive Test-Ban Treaty (CTBT): (1) They can be used as data to estimate the shear velocity of the
crust and uppermost mantle and topography on internal interfaces which are important in event location,
and (2) they can be used to estimate surface-wave travel-time correction surfaces to be used in phase-
matched filters designed to extract low signal-to-noise surface-wave packets.

The purpose of this paper is to describe one useful path through the large number of options available
in an inversion of surface-wave data. Our method appears to provide robust and reliable dispersion maps
on both global and regional scales. The technique we describe has a number of features that have
motivated its development and commend its use: (1) It is developed in a spherical geometry; (2) the region
of inference is defined by an arbitrary simple closed curve so that the method works equally well on local,
regional, or global scales; (3) spatial smoothness and model amplitude constraints can be applied
simultaneously; (4) the selection of model regularization and the smoothing parameters is highly flexible
which allows for the assessment of the effect of variations in these parameters; (5) the method allows for the
simultaneous estimation of spatial resolution and amplitude bias of the images; and (6) the method
optionally allows for the estimation of azimuthal anisotropy.

We present examples of the application of this technique to observed surface-wave group and phase
velocities globally and regionally across Eurasia and Antarctica.
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1. Introduction

We present and discuss a method to invert surface-wave dispersion measurements
(frequency-dependent group or phase velocity) on regional or global scales to
produce two-dimensional (2-D) isotropic and azimuthally anisotropic maps of
surface-wave velocities. Such “tomographic” maps represent a local spatial average
of the phase or group velocity at each location on the map and summarize large
volumes of surface-wave dispersion information in a form that is both useful and
easily transportable. Dispersion information in this form can be applied naturally to
a number of problems relevant to monitoring the nuclear Comprehensive Test-Ban
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Treaty (CTBT); For example, (1) to create phase-matched filters (e.g., HERRIN and

GOFORTH, 1977; RUSSELL et al., 1988; LEACH ef al., 1998; LEVSHIN and RITZWOLLER,

2001, this volume) designed to detect weak surface-wave signals immersed in ambient

and signal-generated noise as a basis for spectral amplitude measurements essential

to discriminate explosions from earthquakes (e.g., STEVENS and DAY, 1985; STEVENS
and MCLAUGHLIN, 1997) and (2) in inversions to estimate the shear-velocity
structure of the crust and upper mantle (e.g., VILLASENOR et al., 2001) which is useful
to improve regional event locations. The method we discuss here is designed to
produce accurate and detailed regional surface-wave maps efficiently and reliably, as
well as to provide information about the quality of the maps. The method may be
applied, perhaps with a few extensions, to other 2-D inverse problems such as P, and

S, tomography (e.g., LEVSHIN et al., 2001).

We note, as a preface to further discussion, that the relationship between
observed seismic waveforms and an earth model is not linear. Thus, the problem of
using surface-wave data to constrain the structure of the crust and upper mantle is
nonlinear. In surface-wave inversions, however, the inverse problem is typically
divided into two parts: A nearly linear part to estimate 2-D dispersion maps and a
nonlinear part in which the dispersion maps are used to infer earth structure. It is the
nearly linear part that we call surface-wave tomography and that is the subject of this
paper. Some surface-wave inversion methods linearize the relation between the
seismic waveforms and an earth model (e.g., NOLET, 1987; SNIEDER, 1988;
MARQUERING et al., 1996) and iteratively estimate the earth model. Therefore, these
methods do not estimate dispersion maps on the way to constructing structural
models. We take the path through the dispersion maps for the following reasons.

e Surface-wave dispersion maps, like a seismic model, summarize large volumes of
data in a compact form, but remain closer to the data than the models.

e They are less prone to subjective decisions made during inversion and contain
fewer assumptions (both hidden and explicit).

e Because of the foregoing, dispersion maps are more likely than models to be
consumed and utilized by other researchers.

e Dispersion maps are directly applicable to detect and extract surface waves from
potentially noisy records, which is important in discriminating explosions from
earthquakes for CTBT monitoring.

On the negative side, dispersion maps contain only part of the information
concerning earth structure in the seismogram, are the products of inversions
themselves, and contain uncertainties due to both observational and theoretical errors.

There are a number of surface-wave tomographic techniques currently in use by
several research groups around the world. These techniques differ in geometry (i.e.,
Cartesian versus spherical), model parameterization (e.g., global versus local basis
functions), certain theoretical assumptions (particularly about wave paths and
scattering), the regularization scheme, and whether azimuthal anisotropy can be
estimated simultaneously with the isotropic velocities. Because surface-wave tomo-
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graphic inversions are invariably ill-posed, the regularization scheme is the focal

point of any inversion method. There is a large, general literature on ill-posed linear

or linearized inversions that applies directly to the surface-wave problem (e.g.,

TikHONOV, 1963; BACKUS and GILBERT, 1968, 1970; FRANKLIN, 1970; AKI and

RICHARDS, 1980; TARANTOLA and VALETTE, 1982; TARANTOLA, 1987; MENKE, 1989;

PARKER, 1994; TRAMPERT, 1998). We do not intend to extend this literature, rather

the purpose of this paper is to describe one useful path through the numerous options

available to an inversion method. Our method appears to provide robust and reliable
dispersion maps on both global and regional scales.

The surface-wave tomographic method we describe here has the following
characteristics:

e Geometry: Spherical,

e Scale: The region of inference is defined by an arbitrary simple closed curve;

e Parameterization: Nodes are spaced at approximately constant distances from one
another, interpolation is based on the three nearest neighbors;

o Theoretical Assumptions: Surface waves are treated as rays sampling an infinites-
imal zone along the great circle linking source and receiver, scattering is
completely ignored;

e Regularization: Application of spatial smoothness (with a specified correlation
length) plus model amplitude constraints, both spatially variable and adaptive,
depending on data density;

o Azimuthal Anisotropy: May optionally be estimated with the isotropic velocities.
The theoretical assumptions that we make are common in most of surface-wave

seismology. The method we describe generalizes naturally to non-great circular

paths, if they are known, with finite extended Fresnel zones (e.g., PULLIAM and

SNIEDER, 1998). The incorporation of these generalizations into surface-wave

tomographic methods is an area of active research at this time. The use of the

scattered wavefield (the surface wave coda) is also an area of active research (e.g.,

PoLLiTZ, 1994; FRIEDERICH, 1998), but usually occurs within the context of the

production of a 3-D model rather than 2-D dispersion maps.

The choices of parameterization and regularization require further comment.

1.1. Parameterization

There are four common types of basis functions used to parameterize velocities in
surface-wave tomography: (1) Integral kernels (the Backus-Gilbert approach), (2) a
truncated basis (e.g., polynomial, wavelet, or spectral basis functions), (3) blocks,
and (4) nodes (e.g., TARANTOLA and NERSESSIAN, 1984). In each of these cases, the
tomographic model is represented by a finite number of unknowns. Blocks and nodes
are local whereas wavelets and polynomials are global basis functions. (To the best of
our knowledge, wavelets have not yet been used in surface-wave tomography.)
Backus-Gilbert kernels are typically intermediary between these extremes. Blocks are
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2-D objects of arbitrary shape with constant velocities and are typically packed
densely in the region of study. They are typically regularly shaped or sized, although
there are notable exceptions (e.g., SPAKMAN and BUWAARD, 1998, 2001). Nodes are
discrete spatial points, not regions. A nodal model is therefore defined at a finite
number of discrete points and values in the intervening spaces are determined by a
specific interpolation algorithm in the inversion matrix and travel-time accumulation
codes. Nodes are not necessarily spaced regularly. The ability to adapt the
characteristics of these basis functions to the data distribution and other a priori
information is a desirable characteristic of any parameterization, and is typically
easier with local than with global basis functions. Blocks can be thought of as nodes
with a particularly simple interpolation scheme. Thus we use nodes rather than
blocks because of their greater generality.

To date, most surface-wave travel time tomographic methods have been designed
for global application and have utilized truncated spherical harmonics or 2-D
B-splines as basis functions to represent the velocity distribution (e.g., NAKANISHI
and ANDERSON, 1982; MONTAGNER and TANIMOTO, 1991; TRAMPERT and WOOD-
HOUSE, 1995, 1996; EKSTROM et al., 1997; LASKE and MASTERS, 1996; ZHANG and
LAy, 1996). There are two notable exceptions. The first is the work of DITMAR and
YANOVSKAYA (1987) and YANOVSKAYA and DITMAR (1990) who developed a 2-D
Backus-Gilbert approach utilizing first-spatial gradient smoothness constraints for
regional application. This method has been extensively used in group velocity
tomography (e.g., LEVSHIN et al., 1989; Wu and LEVSHIN, 1994; Wu et al., 1997,
RiTZwWOLLER and LEVSHIN, 1998; RITZWOLLER et al., 1998; VDOVIN et al., 1999) for
studies at local and continental scales. The main problem is that the method has been
developed in Cartesian coordinates, and sphericity is approximated by an inexact
earth flattening transformation (YANOVSKAYA, 1982; JOBERT and JOBERT, 1983)
which works well only if the region of study is sufficiently small (roughly less than
one-tenth of the earth’s surface). YANOVSKAYA and ANTONOVA (2000) recently
extended the method to a spherical geometry, however. The second is the irregular
block method of SPAKMAN and BIUWAARD (2001).

We prefer local to global basis functions due to the simplicity of applying local
damping constraints, the ability to estimate regions of completely general shape and
size, and the ease by which one can intermix regions with different grid spacings. For
example, with local basis functions it is straightforward to allow damping to vary
spatially, but it is considerably harder to target damping spatially with global basis
functions. This spatially targeted damping is a highly desirable feature, particularly if
data distribution is inhomogeneous.

1.2. Regularization

The term ‘regularization’, as we use it, refers to constraints placed explicitly on the
estimated model during inversion. These constraints appear in the ““penalty function”
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that is explicitly minimized in the inversion. We prefer this term to ‘damping’ but take
the terms to be roughly synonymous and will use them interchangeably. Regular-
ization commonly involves the application of some combination of constraints on
model amplitude, the magnitude of the perturbation from a reference state, and on
the amplitude of the first and/or second spatial gradients of the model. It is typically
the way in which a priori information about the estimated model is applied and
how the effects of inversion instabilities are minimized. The strength of regularization
or damping is usually something specified by the user of a tomographic code, but may
vary in an adaptive way with information regarding data quantity, quality, and
distribution and relating to the reliability of the reference model or other a priori
information. As alluded to above, the practical difference between local and global
basis functions manifests itself in how regularization constraints (e.g., smoothness)
are applied as well as the physical meaning of these constraints.

As described in section 2, the regularization scheme that we have effected involves
a penalty function composed of a spatial smoothing function with a user-defined
correlation length and a spatially variable constraint on the amplitude of the
perturbation from a reference state. The weight of each component of the penalty
function is user specified, but the total strength of the model norm constraint varies
with path density. Our experience indicates that Laplacian or Gaussian smoothing
methods are preferable to gradient smoothing methods. The first-spatial gradient
attempts to produce models that are locally flat, not smooth or of small amplitude.
This works well if data are homogeneously distributed, but tends to extend large
amplitude features into regions with poor data coverage and conflicts with amplitude
penalties if applied simultaneously. The model amplitude constraint smoothly blends
the estimated model into a background reference in regions of low data density such
as the areas on the fringe of the region under study. In such areas the path density is
very low, and the velocity perturbations will be automatically overdamped due to
amplitude constraints. The dependence on data density is also user specified.

2. Surface-wave Tomography

Using ray theory, the forward problem for surface-wave tomography consists of
predicting a frequency-dependent travel time, #z/,(w), for both Rayleigh (R) and
Love (L) waves from a set of 2-D phase or group velocity maps, ¢(r, ®):

tryL(®) :/cg/lL(r, w)ds (1)

where r = [0, ¢] is the surface position vector, 0 and ¢ are colatitude and longitude,
and p specifies the wave path. The dispersion maps are nonlinearly related to the
seismic structure of the earth, .#(r,z), where for simplicity of presentation we have
assumed isotropy, and ./#(r,z) = [vs(z),0,(2), p(2)](r) is the position dependent
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structure vector composed of the shear and compressional velocities and density.
Henceforth, we drop the R/L subscript and, for the purposes of discussion here, do not
explicitly discriminate between group and phase velocities or their integral kernels.

By surface-wave tomography we mean the use of a set of observed travel times
°* () for many different paths p to infer a group or phase velocity map, c(r), at
frequency w. We assume that

% (@) = t(w) + e(w)

where € is an observational error for a given path. The problem is linear if the paths p
are known. Fermat’s Principle states that the travel time of a ray is stationary with
respect to small changes in the ray location. Thus, the wave path will approximate
that of a spherically symmetric model, which is a great-circle linking source and
receiver. This approximation will be successful if the magnitude of Ilateral
heterogeneity in the dispersion maps is small enough to produce path perturbations
smaller than the desired resolution.

2.1. The Forward Problem

Because surface-wave travel times are inversely related to velocities, we
manipulate equation (1) as follows. Using a 2-D reference map, ¢ (r), the travel-
time perturbation relative to the prediction from ¢, (r) is:

5;:#%:/ /ds /—ds (2)

m= c ) (3)

where we have suppressed the r = [0, ¢] dependence throughout and have assumed
that the ray-paths are known and are identical for both ¢ and c.

For an anisotropic solid with a vertical axis of symmetry, the surface-wave
velocities depend on the location r and the local azimuth  of the ray. In the case of a
slightly anisotropic medium, SMITH and DAHLEN (1973) show that phase or group
velocities can be approximated as:

e(r) = er(r) + ca(r) (4)
¢r(r) = Ao(r) (5)

ca(r) = Ai(r) cos(2y) + Aa(r) sin(2y)
+ A;(r) cos(d) + A4(r) sin(4yr) (6)

where ¢; is the isotropic part of velocity, ¢4 is the anisotropic part, 4 is the isotropic
coefficient, and 4, ..., 44 are anisotropic coefficients. If we assume that |c4/c/| < 1
so that (1 4 ¢4 /c,)71 ~ (1 — c4/cr), and if the reference model ¢, is purely isotropic,
then by substituting equations (4)—(6) into (3) we get:
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Co —Cf Cy Cy Co — C
m——-———|—=
Cy Cy Cy Cy (7)

as:
m(e ) =Y n()my(r) (8)

where n should be 0, 2 or 4 for a purely isotropic model, a 2y anisotropic model, or a
4y anisotropic model, respectively, and y, and my are defined as follows:

7o) =1 mo(r) = (co(r) — ¢;(r)) /i (r)

nW) = —cos(2y)  mi(r) = Ai(r)eo(r)/cf(x)

() = —sin(2y)  ma(r) = Ax(r)es(r) /¢f (r) ©)
73(f) = —cos(4y)  m3(r) = A3(r)es(r) /cf ()

Pa(Y) = —sin(4)  ma(r) = Aa(r)ca(r)/cf(r) .

2.2. The Inverse Problem

Our goal is to estimate the vector function m(r) = [mg(r),...,m,(r)] using a set of
observed travel-time residuals d relative to the reference model ¢, (r):

d=05r" = g = [ Daste (10)
p Co
From m(r) we can reconstruct ¢, 4y, ..., A4 for substitution into equations (4)—(6):
Co

= 11
“ 14 myg ( )

my
Ay = k#0) . 12
=T (k20) (12)

We define the linear functionals G; as:
Gilm) = [ (o) (1) mvds (13)
k=0 /i

By substituting equations (8) and (13) into equation (10) for each path index
(1 <i< N) we obtain the following:
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dl' = 5t?bs = G,(m) + € . (14)

To estimate m we choose to minimize the following penalty function:
(G(m) —d)"C(G(m) —d) + > o||F(m)|* + D BFlIHi(m)[* ,  (15)
k=0 k=0

where G is a vector of the functionals G;. For an arbitrary function f'(r) the norm is
defined as: || /(r)|]* = [/ (r)dr.

The first term of the penalty function represents data misfit (C is the a priori
covariance matrix of observational errors ¢;). The second term is the spatial
smoothing condition such that

F.(m) = my(r) f/Sk(r, r)my(¢)dr’ | (16)
s
where Sj is a smoothing kernel defined as follows:
712

Se(r,v) = K _r=rl 17
k(r,x') = Kok exp( 207 (17)
/Sk(r,r/)dr’ =1, (18)

s

and gy is spatial smoothing width or correlation length. The minimization of the
expression in equation (16) explicitly ensures that the estimated model will
approximate a smoothed version of the model.

The final term in the penalty function penalizes the weighted norm of the model,

Hi(m) = A (p(e), 7(x))my (19)

where # is a weighting function that depends on local path density p for isotropic
structure and a measure of local azimuthal distribution y for azimuthal anisotropy.
Thus, for k =0, # = #(p) and for k = 1,...,4, # = # (). Path density is defined
as the number of paths intersecting a circle of fixed radius with center at the point r.
For isotropic structure we choose # to approach zero where path density is suitably
high and unity in areas of poor path coverage. The function /#(p) can be chosen in
various ways. We use # = exp(—A1p), where 2 is a user-defined constant. An example
is shown in Figure 1. To damp azimuthal anisotropy in regions with poor azimuthal
coverage, we define y(0, ¢) to measure the azimuthal distribution of ray paths at
point (0, ¢). To find y we construct a histogram of azimuthal distribution of raypaths
in the vicinity of (0, ¢) for a fixed number # of azimuthal bins in the interval between
0° and 180°, and evaluate the function
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Figure 1
Example of the model norm weighting function, #(p) that we commonly use; e.g., as Figure 5. Here we
choose the constant 4 ~ 0.147 so that when path density (p) is less than about 20 paths per 50,000 km?
damping toward the input reference model becomes increasingly strong.

lefz«
=T (20)

where f; is the density of azimuths in the ith bin. Values of y are in the range
I/n <y <1. y=1 characterizes an almost uniform distribution of azimuths, and
¥~ 1/n is an indicator of the predominance of a single azimuthal direction (large
azimuthal gap). We assume that the anisotropic coefficients cannot be determined
reliably in regions where y is less than ~ 0.3. Examples of a y map and the histogram
of azimuthal density, f (i), are given in Section 3.4 (Figs. 8c,d).

Because m is a perturbation from a reference state, the effect of the third term
in the penalty function is to merge the estimated model smoothly and
continuously into the isotropic reference state in regions of poor data coverage.
In regions of good coverage, this term has no effect so that the only
regularization is the smoothness constraint represented by the second term in
expression (15).

The user-supplied regularization constants, o; and f;, define the relative
strengths of the three terms in the penalty function. The smoothing width or
correlation length o, is also specified by the user. These parameters should be
varied systematically in applying the method. In practice, we often estimate the
isotropic and anisotropic maps simultaneously. In this case we normally use slightly
different values of all three constants oy, f3;, o for the isotropic and anisotropic
maps to make anisotropic maps more smooth. Typically a; = o, and o3 = oy, 0, =
g2, 03= 04, and B, = p.
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2.3. Discretization

The discretization of the equations in the preceding section involves two steps: (1)
the formation of a discrete grid and the evaluation of the model on this grid and (2)
the discretization of the penalty function. We discuss each in turn.

2.3a. Grid, Nearest Neighbors, and Interpolation

The goal is to generate a discrete grid with nodes that are approximately
constantly spaced on a sphere such that nearest neighbors can be identified and the
model evaluated at these points quickly. Significant advances in nonconstant grid
generation have been made in recent years by several researchers (e.g., SAMBRIDGE
et al., 1995; SPAKMAN and BUWAARD, 1998), particularly for application in 3-D
body-wave tomography. The tomographic method that we describe is applicable
irrespective of grid. However, because path coverage for regional surface waves tends
to be less variable than for body waves, and surface-wave tomography is only in 2-D
(e.g., BUWAARD et al., 1998; VAN DER HILST et al., 1997; GRAND et al., 1997; ZHoU,
1996), we find that a constant grid is sufficient for our purposes. Generalization to
nonconstant grids for surface wave tomography is, however, a useful direction for
future research (e.g., SPAKMAN and BIUWAARD, 2001).

We create a nearly constant grid on a sphere by performing a central projection
onto the sphere of a grid on a reference cube, such that the cube and the sphere share
a common center. The advantage of using this reference cube is that nearest
neighbors on each of the six faces of the cube are identified trivially. Efficient
neighbor identification for interpolation during model evaluation is important for
travel-time accumulation, which occurs during the construction of the inversion
matrix, and in the application of the smoothness constraint. Thus, this method is
computationally very efficient because it imposes a natural ordering for the nodes on
the sphere, which avoids the need for the creation and use of an adjacency matrix
(e.g., SLOAN, 1987; SAMBRIDGE et al., 1995). To ensure that the distances between
nodes on the sphere are approximately constant, the grid on the reference cube must
be non-constant. Without providing the details, Figure 2 demonstrates the mapping
between the face of a cube and the spherical shell related to the face. The current
method of grid generation guarantees that the areas defined by adjacent quadruples
of nodes on the sphere differ by no more than 10% from the average area. One could
produce a mapping with smaller variation in these areas, but this is good enough for
our purposes.

The value of the model at each location on the sphere is evaluated from the values
at the three nearest nodes. This is done by constructing Delaunay triangles from the
set of nodes on the sphere (e.g., AURENHAMMER, 1991; BRAUN and SAMBRIDGE,
1997). Each triangle defines a flat plane between the three nodes at the vertices on the
plane which is nearly the tangent plane to the sphere. We define a local Cartesian
coordinate system on this plane and determine the distances between the point of
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Figure 2
An example of the Delaunay triangulation on a sphere by defining a variable triangular grid on a reference
cube and performing a central projection of the grid onto the sphere.

interest and the three defining nodes approximately. Typical internodal distances,
even for global inversions, are 200 km or less, therefore this local Cartesian
approximation is accurate enough for our purposes. Three-point linear interpolation
is used to evaluate the model within each Delaunay triangle. Thus, the value of the
model at some arbitrary point r can be expressed as the weighted sum of the values at
the three neighboring nodes:

mi(r) =D mi(r;)w; () (21)
=1

where r; are the locations of the M nodes (vortices of triangles) defining the model.
The weights w;(r) are non-zero only inside the triangles surrounding r; and linearly
depend on two local coordinates inside the Delaunay triangle enclosing r. The
weights w;(r) form the set of the local basis functions such that the values of the basis
functions range from 0 to 1 with a maximum value of 1 at the point r;.

2.3b. The Inversion Matrix

To construct the inversion matrix we must substitute equation (21) into
expression (15). After integrating, the penalty function can be rewritten in matrix
form as the sum of two quadratic forms,

(Gm —d)"'C"'(Gm —d) + m’Qm |, (22)

in which the second term is the regularization condition that includes both
smoothness and model norm constraints. Let N be the number of data, n be the
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isotropic/anisotropic index (0 for isotropic, 2 for isotropic plus 2y anisotropic, 4 for
isotropic plus both 2y and 4y anisotropic), and M be the number of nodes defining
the model such that k=0,...,n,i=1,....N,j=1,... M.
Let us define now our discrete model as a vector m in the following way:
m = (m()(rl),m()(l‘z), PN 7m()(l'M), e 7m,,(r1), m,,(l‘g), e ,mn(l'M))T .

Without changing notation we discretize G to create a N x (n + 1)M matrix in the
following way. Let G be composed of a set of # submatrices, U¥,

G=[U] (n=0)

G= {UOEUIEUZ} (n=2)

(23)
G= {U05U15U25U35U4] (n=4)
where U* is defined as follows:
Ull; :/(yk(lﬁ)cal(r))wj(r)ds . (24)
Di

The (n+ 1)M X (n+ 1)M regularization matrix Q is the result of discrete
numerical integration of the last two terms in equation (15), and can be determined
in the following way:

Q=FF+HH , (25)

where the smoothing constraint is incorporated within the (n+ 1)M x (n+ )M
block-diagonal matrix F as follows:

wf ... 0 ... 0
F = 0 O(ka 0 (26)
: 0
0 0 o, F"

The M x M matrices Ff = (Fj’},) (k=0,...,n;j,j/=1,...,M) are:

Fk — o :E Si(ri,ry) . 27
i {_Sk(r,ivrj’)/Pk j#j, P ~ k(. ry) (27)

The model norm constraint is encoded within the (n+ 1)M x (n+ 1)M matrix H
which consists of (n 4 1) diagonal matrices H* = (Hj’;,)
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BH ... 0 ... 0
H= 6 ﬁk:H" 0 (28)
0 0 g
where
I%g;,:{&’)%f(p(r/)m(rj)) j;ii (29)

With these definitions the forward problem for the travel-time perturbation
relative to an isotropic reference model is:

ot=Gm , (30)
and the estimated model is:
m=GC 't (31)

where the inversion operator, G', is defined as follows:

G = (G'C'G+Q) 'G" . (32)

2.4. Resolution Analysis

We agree with LEVEQUE et al. (1993) who argue that the estimation of the
resolution matrix is generally preferable to checkerboard tests such as those
performed by RiTZwOLLER and LEVSHIN (1998). Note that from equations (30)—
(32):

m=G'C'ot=(G'C'G)m = #m (33)
72=(G'C'G+Q)'G'C'G . (34)

The matrix £ is the resolution matrix. In this application each row of £ is a
resolution map defining the resolution at one spatial node. Thus, the resolution
matrix is very large and the information it contains is somewhat difficult to utilize.
We attempt to summarize the information in each resolution map by estimating two
scalar quantities at each point: spatial resolution and amplitude bias.

To estimate spatial resolution we fit a cone to each resolution map. This cone
approximates closely the response of the tomographic procedure to a J-like
perturbation at the target node. Figure 3a shows a J-like input perturbation (the
local basic function) at the specified spatial location. Figure 3b displays the
resolution map for that spatial location for the 50 s Rayleigh wave. The cone that
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Figure 3
Graphical description of the resolution analysis. (a) Minimum sized function that can be estimated with a
2° x 2° grid. The function is centered at 42°N latitude and 73°E longitude. (b) The row of the resolution
matrix (a resolution map) for the point specified in (a) for the 50 s Rayleigh wave. (c) The cone that best fits
the row of the resolution matrix shown in (b). A comparison of (a) with (b) and (c) demonstrates the spatial
spreading produced in the tomographic procedure. (d) The difference between the resolution map and the
best-fitting cone.

best fits the resolution surface for this point is shown in Figure 3c and the difference
between the fit cone and the resolution map appears in Figure 3d. We define the
resolution oy as the radius of the base of the fit cone. This value may be interpreted
as the minimum distance at which two d-shaped input anomalies (i.e., Fig. 3a) can be
resolved on a tomographic map. Of course, resolution cannot be less than 2¢, where ¢
is the distance between the nodes. In the example in Figure 3, nodes are separated by
2 equatorial degrees (~222 km). Therefore, if oy is estimated to be less than 2/ or
444 km, we redefine resolution as o = 2¢ = 444 km.

It is also useful to know how reliably the amplitude of the estimated anomalies
may be determined. To do this we apply the appropriate row of the resolution matrix
(eq. 33) associated with node (6, ¢) to a test model consisting of a cylinder of unit
height with a diameter equal to 20y centered at (0, ¢). We then define the amplitude
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of the fit surface as the average amplitude within og of the center of the input
cylinder. The relative difference between the input and estimated amplitudes is then
taken as the amplitude bias estimate for this point on the map.

Examples of the estimated resolution and amplitude bias are shown in Figure 4
for the 20 s Rayleigh wave. Across much of Eurasia the 20 s Rayleigh wave data
yields nearly optimal resolution for a 2° x 2° grid spacing; about 450 km. Amplitude
bias at the estimated resolution is typically within about £10% at each spatial point.
Near the periphery of the map where data coverage degrades, estimates of spatial
resolution become unreliable but amplitude bias grows rapidly. Thus, amplitude bias
is a more reliable means of estimating the reliability of dispersion maps in regions of
extremely poor data coverage, using the method we describe here.

2.5. Computational Requirements

The following formulas summarize computational time (550 MHz, DEC Alpha)
and memory requirements for a purely isotropic inversion:

N
t~ 68 (E) hours (computational time in hours) (35)

450 500 550 600 650 700 1000 2000 10 5 -2 2 5 10 15 25 50 75 100

Resolution (km) Amplitude Bias (%)

Figure 4
(a) Spatial resolution in km for the 20 s Rayleigh wave across Eurasia. Resolution depends on data
coverage. In the central part of Eurasia the resolution is high (~ 450-500 km) in areas of high path density
and degrades rapidly on the periphery of the region where path density (Fig. 5d) is low. (b) Amplitude bias
for Rayleigh waves at 20 s period. Units of amplitude bias are percent such that 0% means that the
cylindrical test function’s amplitude has been fully recovered upon inversion. Amplitude bias across the
region varies between about +10% depending on path coverage.
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o4
M ~ 29 (3) Gb (memory usage in Gb) , (36)

where £ is the fraction of the earth’s surface covered and d is the distance between
nodesf in equatorial degrees. For Eurasian tomography about half of the earth’s
surface is covered (k ~ 0.5) and d = 2 degrees = 222 km, thus ¢ ~ 15 minutes and
M ~ 115 Mb.

3. Examples of Applications

3.1. Preliminaries

The technique described above has been extensively tested using different cell
sizes, regularization parameters, and data sets from different regions of the world:
Eurasia, Antarctica, South America, and the Arctic. The two conditions necessary
for constructing reliable tomographic images are preliminary outlier rejection (data
“cleaning”) and a careful choice of regularization (or damping) parameters
appropriate for a given path coverage.

Data cleaning is based on a two part process. First, we identify outliers in a
preliminary way by clustering measurements into summary rays. Second, the
resulting data are inverted for an overdamped, smooth tomographic map and
outliers are then identified by comparing observed group travel times with those
predicted from the smooth map. The usual percentage of the rejected measurements
is about 2-3% of all observations.

The choice of regularization parameters is made after several iterations using
different combinations of the parameters oy, 3, ox. The criteria for choosing the best
combination are subjective and are based on common sense and some a priori
information regarding the region under study. We select a combination of
parameters that produces a map free from aphysical features like speckling,
streaking, and other artifacts and that also reveals the well known features of the
region (sedimentary basins, mountain ranges, etc.) appropriate for the type of map
under construction. RITZWOLLER and LEVSHIN (1998) describe this procedure in
detail. For example, a typical combination of parameters selected for an isotropic
inversion of the 20 s Rayleigh wave data for Eurasia on a 2° x 2° grid is: ay = 800,
Bo = 1, and gy = 200. The resulting maps are relatively insensitive to small (20-30%)
changes in the damping parameters. Similar robustness of maps of azimuthal
anisotropy to changes in the anisotropy damping parameters was demonstrated by
VDOVIN (1999) for Antarctica, but in other areas of the world both the pattern and
the amplitude of anisotropy change strongly with damping (e.g., Eurasia and the
Arctic, LEVSHIN et al., 2001) as discussed further in section 3.4.
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3.2. Regional Isotropic Group-velocity Maps

Regional group- and phase-velocity maps have been produced by a number of
researchers (e.g., SUETSUGU and NAKANISHI, 1985; CURTIS et al., 1998; RITZWOLLER
et al., 1999; and many others). Using the protocol described in section 3.1, we have
recently constructed a set of isotropic group velocity maps of Eurasia and
surrounding areas for Rayleigh and Love waves from 15 s to 200 s period. An
example for the 20 s Rayleigh wave is shown in Figure 5a. As input data we used
12900 Rayleigh group velocity measurements obtained from records of both global
(GSN, GEOSCOPE) and regional (CDSN, CSN, USNSN, MEDNET, Kirgiz and
Kazak networks) networks. The basic characteristics of the measurement procedure,
data control and weighting are described in detail in RITZWOLLER and LEVSHIN
(1998). Because 20 s Rayleigh waves are most sensitive to upper crustal velocities, the
corresponding group velocity map clearly shows the significant sedimentary basins
across Eurasia and on the periphery of the Arctic Ocean as low velocity anomalies
(e.g., Barents Sea shelf, western Siberian sedimentary complex, Pre-Caspian, South
Caspian, Black Sea, Tadzhik Depression, the Tarim Basin, Dzhungarian Basin,
Ganges Fan and Delta, etc.) There is qualitative agreement between the observed
group velocity map and the prediction of a hybrid model composed of crustal
structure from the model CRUSTS.1 (MOONEY et al., 1998) and mantle velocities
from the model S16B30 (MASTERS et al., 1996). The comparison is shown in Figures
5b,c. The estimated r.m.s. group velocity misfit at 20 s period is significantly less for
our maps (0.08 km/s) than for the map computed from the model CRUSTS.1/
S16B30 (0.14 km/s). The numbers for the 50 s Rayleigh wave are correspondingly
0.05 km/s and 0.16 km/s. Similar results are reported by RITZWOLLER and LEVSHIN
(1998) which used the tomographic method of DITMAR and YANOVSKAYA (1987).

Figure 6 presents group travel-time correction surfaces for the 40 s Rayleigh wave
for several stations in Central Asia. These surfaces summarize travel-time informa-
tion in group velocity maps to be used to improve detection and discrimination
schemes in nuclear monitoring (LEVSHIN and RITZWOLLER, 2001, this volume).
LEVSHIN and RiTzwOLLER (2001) also present an example of travel-time correction
surfaces for the 20 s Rayleigh waves.

3.3. Global Isotropic Phase-velocity Maps

The tomographic method described above identifies the region of interest by
requiring the user to define a simple closed curve on the sphere and identify a single
point outside the contour that distinguishes the inside from the outside of the region
of interest. If the contour is a very small circle surrounding the point, then the region
of interest becomes nearly the entire sphere. In this way, our method can be used to
produce global tomographic maps on a regular grid. An example is shown in Figure
7a, in which we have inverted the 100 s Rayleigh wave phase velocity data of
TRAMPERT and WOODHOUSE (1995, 1996). Trampert and Woodhouse’s map is shown
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Figure 5
(a) The group-velocity map across Eurasia for the 20 s Rayleigh wave using the method described in this
paper. A 2° x 2° grid is used. (b) The group-velocity map computed from the smoothed version of the
model CRUSTS.1/S16B30. Maps (a) and (b) are plotted in percent relative to the same average velocity. (c)
The difference between maps (a) and (b) relative to the same average in (a) and (b). (d) Path density,
defined as the number of rays intersecting a 2° square cell (~50,000 km?). White lines are plate boundaries.
The red lines delineate the contour of 20 paths per 50,000 km?. Inside this contour we have the greatest
confidence in the estimated maps. Outside it, model norm damping begins to take effect.
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Group velocity correction surfaces for four stations in Central and Southern Asia for the 40 s Rayleigh

wave. For each geographical point the maps define the group velocity perturbation that should be applied

to a 40 s Rayleigh wave observed at a station if an event were located at the chosen point. Perturbations

are relative to the group velocity at the station. Units are m/s. The locations of the Chinese and Indian test
sites are indicated with stars.

in Figure 7b, where they used spherical harmonics up through degree and order 40.
The major features of these maps are nearly identical. We have chosen the damping
parameters, however, to accentuate smaller scale features than those apparent in the
spherical harmonic parameterization. There is considerable signal remaining in the
data set of Trampert and Woodhouse to be fit by smaller scale features than those
apparent in Figure 7b. For example, the rms misfit to Trampert and Woodhouse’s
data produced by the map in Figure 7a is about 8.1 s compared with the 10.8 s
produced by the spherical harmonic map in Figure 7b; about a 40% reduction in
variance.

3.4. Azimuthal Anisotropy

We follow the majority of the studies of azimuthal anisotropy and our
discussion above (equations (4)—(6)) by parameterizing azimuthal anisotropy for
group velocity as:
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Figure 7
(a) Global 100 s Rayleigh-wave phase-velocity map estimated with the procedure described in this paper
using the data of TRAMPERT and WOODHOUSE (1995, 1996). (b) Trampert and Woodhouse’s map using a
degree 40 spherical harmonic parameterization using the same data as in (a).

U(r, ) = Uy(r) + Uy (r) cos 2y + Up(r) sin 24y + Us(r) cos 4y + Uy(r) sindy |, (37)

where Uj is isotropic group velocity at spatial point r = (6, ¢), U; and U, define the
2y part of azimuthal anisotropy, and U; and Uy the 4y part of azimuthal anisotropy.

Figure 8 presents examples of the 2y component of group velocity azimuthal
anisotropy for the 50 s Rayleigh wave across Antarctica and the surrounding oceans.
We took the approximately 2200 observations and divided them into two separate
sets of about 1100 measurements each which we then inverted separately for the two
maps in Figures 8a,b. Both maps display spatially smooth anisotropy patterns, and
the fast axes at many locations tend to be parallel to the directions of plate motions.
The main features of the maps are similar, but there are differences in detail. In order
to quantify the correlation between these two 2y maps we use the coherence function
defined by GRIOT et al. (1998) which takes into account differences in the fast axes
directions  (a1(0,¢), 02(0,¢)) and the amplitudes (4,(0,¢), 42(0,¢);4 =
(U} + U22)1/2) of the two maps. The coherence K as a function of rotation angle «,
varying between —90° and 90°, is defined as follows:

3 341 (0,)42(0. ¢)sin exp - 1L o 0011)
o3
K(o) =

172

172
(zzm 043(0, ¢)> (zzm 045(0, d)))
0 ¢ 0 ¢
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Figure 8
(a) and (b). The 2y component of the 50 s Rayleigh-wave group-velocity anisotropy across Antarctica and
the surrounding oceans. Results from two equal data subsets of about 1100 measurements each are shown
for comparison. (c) Distribution of the function y (6, ¢) characterizing the azimuthal coverage for the entire
set of 2200 Rayleigh-wave paths. (d) Histogram of azimuthal distribution at the fixed point 0 = 173°
(83°S), ¢ = 267° (93°W) shown by the star in (c).

Here D¢, is the uncertainty in the anisotropic direction, and was set to equal 10°. The
resulting curve is shown in Figure 9. It is evident that the two maps are correlated,
and the average absolute difference in orientation of the fast axes across the maps is
less than 20°. The low value of the maximum coherence (~0.45) reflects differences in
amplitudes of the anisotropic coefficients between the two maps.



1372 M. P. Barmin et al. Pure appl. geophys.,

0.5

0.2 — -

Coherence

0.1 — —

0.0 —_——T T T T
-100 -80 -60 -40 -20 0O 20 40 60 80 100
Rotation Angle (Degrees)

Figure 9
Coherence as defined by GRIOT et al. (1998) between the two 2y anisotropy maps shown in Figure 8.

The azimuthal coverage of the region is illustrated by Figure 8c, where the
behavior of the function y(0, ¢) defined by equation (20) is shown. The area in which
y > 0.3 covers about 60% of the region. An example of a histogram of azimuthal
distribution for a single point is shown in Figure 8d. In the vicinity of this point,
7 = 0.53 which indicates a small azimuthal gap and acceptable azimuthal coverage.

The estimated maps, in addition, correlate fairly well with the global phase
velocity maps of TRAMPERT and WOODHOUSE (1996), particularly for the Rayleigh
50 s and 100 s period maps, but there are notable differences.

In summary, across Antarctica and the surrounding oceans azimuthal anisotropy
appears to be a fairly robust observable. Across Eurasia and the Arctic this is not
true, however. We find that similar data subsetting and arbitrary changes in damping
and parameterization can produce substantial changes in both the pattern and
amplitude of the estimated anisotropy (e.g., LEVSHIN er al., 2001). Although
azimuthal anisotropy can be rapidly and efficiently estimated with the algorithm
described above, it remains a difficult target to estimate reliably with surface-wave
data, particularly in continental regions.

4. Conclusions

We have described a rapid method for constructing surface-wave tomographic
maps on local, regional or global scales. Extensive testing of this technique on data
sets obtained from a variety of regions around the globe have confirmed its efficiency
in producing detailed and reliable surface-wave group and phase-velocity tomo-
graphic maps together with useful measures of map quality.
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